KHẢ NĂNG TẠO CHẤT HOẠT ĐỘNG BỀ MẶT SINH HỌC CỦA VI KHUẨN GORDONIA PHÂN LẬP TỪ MÔI TRƯỜNG Ô NHIỄM DẦU TẠI PHÍA NAM VIỆT NAM
Nội dung chính của bài viết
Tóm tắt
BIOSURFACTANTS PRODUCED BY A NOVEL GORDONIA BACTERIUM ISOLATED FROM OIL-CONTAMINATED SAMPLES TAKEN IN SOUTHERN VIETNAM
Novel bacterial strain 3.7 was isolated from oil-contaminated soil in Southern Vietnam that is capable to grow on hexadecane as sole carbon and energy sources. This isolate was identified as Gordonia amicalis (with related 100%) based on 16S rRNA sequence analysis. The strain 3.7 produces at least two classes of biosurfactants (glycolipid, lipopeptid) those possess high emulsifying activity (E24 = 67%). Fatty acid composition in organic extract was determined by GC-MS, most of them are hexadecanoic acid (53%). Thus, G.amicalis 3.7 could be used as component in biopreparation for clean up of oil-contaminated areas and as potential producer of surface active compounds.
Từ khóa
Gordonia, biosurfactant, fatty acid, oil-degrading bacteria, chất hoạt hóa bề mặt sinh học, acid béo, vi sinh vật phân hủy dầu
Chi tiết bài viết
Tài liệu tham khảo
2. Cooper D.G., Goldenberg B.G., Surface-active agents from two Bacillus species, Appl Environ Microbiol, 1987, 53:224-229.
3. Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F., Colorimetric method for determnation of sugers and related substances, Anal Chem, 1956, 28(3):350-356.
4. Franzetti A., Bestetti G., Caredda P., La Colla P., Tamburini E., Surface-active compounds and their role in the access to hydrocarbons in Gordonia strains, FEMS Microbiol Ecol, 2008, 63(2):238-248.
5. Griffin W.C., Classification of Surface-Active Agents by “HLB”, J Soc Cosmet Chem, 1949, 1:311-326.
6. Hao D.H., Lin J.Q., Song X., Lin J.Q., Su Y.J., Qu Y.B., Isolation, identification, and performance studies of a novel paraffin-degrading bacterium of Gordonia amicalis LH3, Biotechnol Bioproc E, 2008, 13(1):61-68.
7. Kitamoto D., Isoda H., Nakahara T., Functions and potential applications of glycolipid biosurfactants-from energy-saving materials to gene delivery carriers, J Biosci Bioeng, 2002, 94(3):187-201.
8. Kuyukina M.S., Ivshina I.B., Philp J.C., Christofi N., Dunbar S.A., Ritchkova M. I., Recovery of Rhodococcus biosurfactants using methyl-tertiary butyl ether extraction, J Microbiol Methods, 2001, 46:149-156.
9. Matsuura A.B. J., Santos L., Marcos N.E., Andreia F.F., Matsuura T., Grossman M., Durrant L., Production and characterization of surface-active compounds from Gordonia amicalis, Braz Arch Biol Technol, 2014, 57(1):138-144.
10. Mnif I., Ghribi D., Microbial derived surface active compounds: properties and screening concept. World J Microbiol Biotechnol, 2015, 31(7):1001-1020.
11. Paulino B.N., Pessoa M.G., Mano M.C., Molina G., Neri-Numa I.A., Pastore G.M., Current status in biotechnological production and applications of glycolipid biosurfactants, Appl Microbiol Biotechnol, 2016, 100(24):10265-10293.
12. Petrikov K., Delegan Ya., Surin A., Ponamoreva O., Puntus I., Filonov A., Boronin A., Glycolipids of Pseudomonas and Rhodococcus oil-degrading bacteria used in bioremediation preparations: Formation and structure, Process Biochem, 2013, 48(5-6):931-935.
13. Santos D.K., Rufino R.D., Luna J.M., Santos V.A., Sarubbo L.A., Biosurfactants: Multifunctional Biomolecules of the 21st Century, Int J Mol Sci, 2016, 17(3):1-31.
14. Silva T.P.., Paixao S.M., Alves L., Ability of Gordonia alkanivorans strain 1B for high added value carotenoids production, RSC Advances, 2016, 6(63):58055-58063.
15. Sowani H., Mohite P., Munot H., Shouche Y., Bapat T., Kumar A.R., Zinjarde S., Green synthesis of gold and silver nanoparticles by an actinomycete Gordonia amicalis HS-11: Mechanistic aspects and biological application, Process Biochem, 2016, 51(3):374-383.
16. Supattra L., Witchaya R., Nichakorn K., Nanthorn P., Suwat S., Onruthai P., Ekawan L., Production and Application of Gordonia westfalica GY40 Biosurfactant for Remediation of Fuel Oil Spill, Water Air Soil Pollut, 2016, 227(9):227-325.
17. Tokumoto Y., Nomura N., Uchiyama H., Imura T., Morita T., Fukuoka T., Kitamoto D., Structural characterization and surface-active properties of a succinoyl trehalose lipid produced by Rhodococcus sp. SD-74, J Oleo Sci, 2009, 58:97-102.
18. Uzoigwe C., Burgess J.G., Ennis C.J., Rahman P.K., Bioemulsifiers are not biosurfactants and require different screening approaches, Front in Microbiol, 2015, 6:1-6.
19. White D.A, Hird L.C., Ali S.T., Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026, J Appl Microbiol, 2013, 115(3):744-755.
20. Whyte L.G., Slagman S.J., Pietrantonio F., Bourbonniere L., Koval S.F., Lawrence J.R., Greer C.W., Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15, Appl Environ Microbiol, 1999, 65(7):2961-2968.
21. Делеган Я.А., Ветрова А.А., Титок М.А., Филонов А.Е., Разработка консорциума термотолерантных бактерий как основы биопрепарата для ремедиации нефтезагрязненных грунтов и вод в жарком климате, Биотехнология, 2016, 1:53-64.
22. http://www.nist.gov/srd/nist l a.cfm