KHẢO SÁT ĐIỀU KIỆN NUÔI CẤY BIỂU HIỆN CHUỖI NHẸ ĐỘC TỐ THẦN KINH TYPE HUYẾT THANH B TÁI TỔ HỢP CỦA VI KHUẨN Clostridium botulinum TRONG TẾ BÀO Escherichia coli BL21 (DE3)

Trịnh Văn Toàn1, , Lê Ngọc Diệp2, Hoàng Đăng Hiếu1, Phạm Việt Hùng1, Võ Viết Cường1, Lê Thị Lan Anh1
1 Viện Y sinh Nhiệt đới, Trung tâm Nhiệt đới Việt - Nga
2 Đại học Khoa học tự nhiên, Đại học Quốc gia Hà Nội
Tác giả liên hệ:
Trịnh Văn Toàn
Viện Y sinh Nhiệt đới, Trung tâm Nhiệt đới Việt - Nga

Nội dung chính của bài viết

Tóm tắt

Botulinum neurotoxin (BoNT) is a protein known to cause poisoning through the gastrointestinal tract. Despite the low incidence rate of the disease, it exhibits a high mortality rate (5-10%) if not promptly diagnosed and treated. Most human poisoning cases are attributed to toxin types A, B, and E (with types A and B being the most toxic), while incidences involving other toxin types are infrequent. The BoNT protein is composed of two chains: the heavy chain (HC, approximately 100 kDa) and the light chain (LC, approximately 50 kDa), with the latter being the toxic domain of BoNT. Research into creating BoNT toxin light chains establishes the scientific basis for developing preventive vaccines and immune diagnostic kits.


To generate the botulinum neurotoxin type B light chain (BoNT/B-LC), a modified gene encoding the light chain from positions 1-450 amino acids was synthesized. This gene was then inserted into the plasmid pET-32a(+) and expressed in Escherichia coli BL21 (DE3). To improve recombinant protein expression productivity, the study optimized the process for expressing recombinant BoNT/B protein at the laboratory flask scale. The E. coli strain BL21 carrying the BoNT/B-LC gene was cultured at 37°C in LB medium with an IPTG concentration of 500 µM and sampled at 12 hours. The optimized process increased recombinant TrxBoNT/B-LC protein content from approximately 268 mg/L to 380 mg/L of culture medium, a 1.7-fold increase compared to the previous optimization.

Chi tiết bài viết

Tài liệu tham khảo

1. Peck M. W., Stringer S. C., Carter A. T., Clostridium botulinum in the postgenomic era, Food Microbiol., 2011, 28:183-191. DOI: 10.1016/j.fm.2010.03.005
2. Rasetti E. C., Popoff M. R., Antibodies and vaccines against botulinum toxins: Available measures and novel approaches, Toxins, 2019, 11:528. DOI: 10.3390/toxins11090528
3. Peck M. W., Clostridium botulinum and the safety of minimally heated, chilled foods: an emerging issue?, J. Appl. Microbiol., 2006, 101(3):556-70. DOI: 10.1111/j.1365-2672.2006.02987.x
4. Massimo C., Francesco I., Botulinum neurotoxins (BoNTs) and their biological, pharmacological, and toxicological issues: A scoping review, Appl. Sci., 2021, 11(19). DOI: 10.3390/app11198849
5. Natalia V., Carmen L., Human poisoning from marine toxins: Unknowns for optimal consumer protection, Toxins (basel), 2018, 10(8):324. DOI: 10.3390/toxins10080324
6. Lacy D. B., Tepp W., Cohen A. C., DasGupta B. R., Stevens R.C., Crystal structure of botulinum neurotoxin type A and implications for toxicity, Nature Structural Biology, 1998, 5:898-902. DOI: 10.1038/2338
7. Krieglstein K. G., DasGupta B. G., Covalent structure of botulinum neurotoxin type A: location of sulfhydryl groups, and disulfide bridges and identification of C-termini of light and heavy chains, J. Protein Chem., 1994, 13(1):49-57. DOI: 10.1007/BF01891992
8. Giampietro G. S., Fabio B., Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin, Nature, 1992, 359:832-835. DOI: 10.1038/359832a0
9. Paiva A., Poulain B., A role for the interchain disulfide or its participating thiols in the internalization of botulinum neurotoxin A revealed by a toxin derivative that binds to ecto-acceptors and inhibits transmitter release intracellularly, J. Biol. Chem., 1993, 268(28):20838-44. DOI:10.1016/S0021-9258(19)36861-9
10. Rosano G. L., Ceccarelli E. A., Recombinant protein expression in Escherichia coli: advances and challenges, Frontiers in Microbiology, 2014, 5:172. DOI: 10.3389/fmicb.2014.00172
11. Jain S., Ponmariappan S., Kumar O., Development of immunodetection system for botulinum neurotoxin type B using synthetic gene based recombinant protein, Indian J. Med. Res., 2011, 134(1):33-39. DOI:10.4103/ijmr.IJMR_1375_16
12. Gilsdorf J., Gul N., Smith L. A., Expression, purification, and characterization of Clostridium botulinum type B light chain, Protein Expr. Purif., 2006, 46(2):256-67. DOI: 10.1016/j.pep.2005.09.024
13. Lindqvist B. H., Haggard E., Calendar R., Giuseppe Bertani (1923-2015), Bacteriophage, 2015, 5(2):e1054060. DOI: 10.1080/21597081.2015.1054060
14. Rosano G. L., Ceccarelli E. A., Recombinant protein expression in Escherichia coli: advances and challenges, Frontiers in Microbiology, 2014, 5:172. DOI: 10.3389/fmicb.2014.00172
15. Grabski A., Mehler M., Drott D., The overnight express autoinduction system: high-density cell growth and protein expression while you sleep, Nat. Meth., 2005, 2:233-235. DOI:10.1038/nmeth0305-233
16. Pushkar M., Effect of substrate and IPTG concentrations on the burden to growth of Escherichia coli on glycerol due to the expression of Lac proteins, Microbiology and Biotechnology, 2012, 93(6):2543-49. DOI: 10.1007/s00253-011-3642-3
17. Dormiani K., Khazaie K., Rabbani M., Moazen F., Cloning and expression of a human tissue plasminogen activator variant: K2S in Escherichia coli, Pakistan J. Biol. Sci., 2007, 10:946-949. DOI: 10.3923/pjbs.2007.946.949