КРАТКИЙ ОБЗОР ИССЛЕДОВАНИЙ УРОВНЯ БАЗАЛЬНОГО ЭНЕРГЕТИЧЕСКОГО МЕТАБОЛИЗМА У ТРОПИЧЕСКИХ ПТИЦ

А.В. Бушуев1, А.Б. Керимов1
1 Bộ môn Động vật xương sống, Khoa Sinh học, Đại học tổng hợp Mat-xco-va

Nội dung chính của bài viết

Tóm tắt

TỔNG QUAN VẮN TẮT CÁC NGHIÊN CỨU VỀ MỨC CHUYỂN HÓA NĂNG LƯỢNG CƠ BẢN CỦA CHIM NHIỆT ĐỚI

Trong công trình này, nhóm tác giả tổng quan vắn tắt những công bố chính về năng lượng học chim nhiệt đới. Mô tả những đặc trưng về mức chuyển hóa năng lượng cơ bản của chúng so với chim ở vùng vĩ độ trung bình và vĩ độ cao. Kết quả nghiên cứu đã chỉ ra những lý giải về mặt tiến hóa và sinh thái của sự giảm mức chuyển hóa năng lượng cơ bản ở chim nhiệt đới.

Chi tiết bài viết

Tài liệu tham khảo

1. Anderson K.J., Jetz W., The broad-scale ecology of energy expenditure of endotherms, Ecology Letters, 2005, 8:310-318.
2. Bartholomew G.A., Vleck C.M., Bucher T.L., Energy metabolism and nocturnal hypothermia in two tropical passerine frugivores, Manacus vitellinus and Pipra mentalis, Physiological Zoology, 1983, 56:370-379.
3. Bech C., Chappell M.A., Astheimer L.B., Londoño G.A., Buttemer W.A., A ‘slow pace of life’ in Australian old-endemic passerine birds is not accompanied by low basal metabolic rates, Journal of Comparative Physiology. B: Biochemical, Systemic, and Environmental Physiology, 2016, 186:503-512.
4. Bennett P.M., Harvey P.H., Active and resting metabolism in birds: allometry, phylogeny and ecology, Journal of Zoology, 1987, 213:327-344.
5. Bosque C., Pacheco M.A., Siegel R.B., Maintenance energy costs of two partially folivorous tropical passerines, The Auk, 1999, 116:246-252.
6. Bryant D.M., Hails C.J., Energetics and growth patterns of three tropical bird species, The Auk, 1983, 100:425-439.
7. Bryant D.M., Hails C.J., Tatner P., Reproductive energetics of two tropical bird species, The Auk, 1984, 101:25-37.
8. Bucher T.L., Ventilation and oxygen consumption in Amazona viridigenalis, Journal of Comparative Physiology B, 1985, 155:269-276.
9. Bucher T.L., Worthington A., Nocturnal hypothermia and oxygen consumption in manakins, The Condor, 1982, 84:327-331.
10. Bushuev A., Tolstenkov O., Zubkova E., Solovyeva E., Kerimov A., Basal metabolic rate in free-living tropical birds: the influence of phylogenetic, behavioral, and ecological factors, Current Zoology, 2017, DOI: https://doi.org/10.1093/cz/zox018.
11. Cade T.J., Tobin C.A., Gold A., Water economy and metabolism of two estrildine finches, Physiological Zoology, 1965, 38:9-33.
12. Cardillo M., The life-history basis of latitudinal diversity gradients: how do species traits vary from the poles to the equator, Journal of Animal Ecology, 2002, 71:79-87.
13. Ellis H.I., Maskrey M., Pettit T.N., Whittow G.C., Thermoregulation in the brown noddy (Anous stolidus), Journal of Thermal Biology, 1995, 20:307-313.
14. Enger P.S., Heat regulation and metabolism in some tropical mammals and birds, Acta Physiologica Scandinavica, 1957, 40:161-166.
15. Fedy B.C., Stutchbury B.J.M., Testosterone does not increase in response to conspecific challenges in the White-bellied Antbird (Myrmeciza longipes), a resident tropical passerine, The Auk, 2006, 123:61-66.
16. Fogden M.P.L., The seasonality and population dynamics of equatorial forest birds in Sarawak, Ibis, 1972, 114:307-343.
17. Foster M.S., A model to explain molt-breeding overlap and clutch size in some tropical birds, Evolution, 1974, 28:182-190.
18. Ghalambor C.K., Martin T.E., Fecundity-survival trade-offs and parental risk-taking in birds, Science, 2001, 292:494-497.
19. Gill S.A., Haggerty T.M., A comparison of life-history and parental care in temperate and tropical wrens, Journal of Avian Biology, 2012, 43:461-471.
20. Grant G.S., Whittow G.C., Metabolic cost of incubation in the Laysan albatross and Bonin petrel, Comparative Biochemistry and Physiology, Part A: Physiology, 1983, 74:77-82.
21. Hails C.J., The metabolic rate of tropical birds, The Condor, 1983, 85:61-65.
22. Hainsworth F.R., Wolf L.L., Regulation of oxygen consumption and body temperature during torpor in a hummingbird, Eulampis jugularis, Science, 1970, 168:368-369.
23. Hau M., Timing of breeding in variable environments: tropical birds as model systems, Hormones and Behavior, 2001, 40:281-290.
24. Hau M., Wikelski M., Soma K.K., Wingfield J.C., Testosterone and year-round territorial aggression in a tropical bird, General and Comparative Endocrinology, 2000, 117:20-33.
25. Jetz W., Freckleton R.P., McKechnie A.E., Environment, migratory tendency, phylogeny and basal metabolic rate in birds, PLoS ONE, 2008, 3, p.e3261.
26. Jimenez A.G., Cooper-Mullin C., Calhoon E.A., Williams J.B., Physiological underpinnings associated with differences in pace of life and metabolic rate in north temperate and neotropical birds, Journal of Comparative Physiology. B: Biochemical, Systemic, and Environmental Physiology, 2014, 184:545-561.
27. Jimenez A.G., Harper J.M., Queenborough S.A., Williams J.B., Linkages between the life-history evolution of tropical and temperate birds and the resistance of cultured skin fibroblasts to oxidative and non-oxidative chemical injury, Journal of Experimental Biology, 2013, 216:1373-1380.
28. Jimenez A.G., Williams J.B., Differences in muscle fiber size and associated energetic costs in phylogenetically paired tropical and temperate birds, Physiological and Biochemical Zoology, 2014, 87:752-761.
29. Johnston J.P., Peach W.J., Gregory R.D., White S.A., Survival rates of tropical and temperate passerines: a Trinidadian perspective, The American Naturalist, 1997, 150:771-789.
30. Klaassen M., Molt and basal metabolic costs in males of 2 subspecies of stonechats - the European Saxicola torquata rubicula and the east-African Saxicola torquata axillaris, Oecologia, 1995, 104:424-432.
31. Krüger K., Prinzinger R., Schuchmann K.L., Torpor and metabolism in hummingbirds, Comparative Biochemistry and Physiology Part A: Physiology, 1982, 73:679-689.
32. Kulesza G., An analysis of clutch-size in New World passerine birds, Ibis, 1990, 132:407-422.
33. Lasiewski R.C., Dawson W.R., Bartholomew G.A., Temperature regulation in the little Papuan frogmouth, Podargus ocellatus, The Condor, 1970, 72:332-338.
34. Lasiewski R.C., Hubbard S.H., Moberly W.R., Energetic relationships of a very small passerine bird, The Condor, 1964, 66:212-220.
35. Levin R.N., Wingfield J.C., The hormonal control of territorial aggression in tropical birds, Ornis Scandinavica, 1992, 23:284-291.
36. Londoño G.A., Chappell M.A., Castañeda M.D.R., Jankowski J.E., Robinson S.K., Basal metabolism in tropical birds: latitude, altitude, and the “pace of life”, Functional Ecology, 2015, 29:338-346.
37. Lovegrove B.G., Perrin M.R., Brown M., The allometry of parrot BMR: seasonal data for the Greater Vasa Parrot, Coracopsis vasa, from Madagascar, Journal of Comparative Physiology B, 2011, 181:1075-1087.
38. MacMillen R.E., Bioenergetics of Hawaiian honeycreepers: the Amakihi (Loxops virens) and the Anianiau (L. parva), The Condor, 1974, 76:62-69.
39. MacMillen R.E., Nonconformance of standard metabolic rate with body mass in Hawaiian honeycreepers, Oecologia, 1981, 49:340-343.
40. MacMillen R.E., Whittow G.C., Christopher E.A., Ebisu R.J., Oxygen consumption, evaporative water loss, and body temperature in the sooty tern, The Auk, 1977, 94:72-79.
41. Martin T.E., Lloyd P., Bosque C., Barton D.C., Biancucci A.L., Cheng Y.R., Ton R., Growth rate variation among passerine species in tropical and temperate sites: an antagonistic interaction between parental food provisioning and nest predation risk, Evolution, 2011, 65:1607-1622.
42. McKechnie A.E., Phenotypic flexibility in basal metabolic rate and the changing view of avian physiological diversity: a review, Journal of Comparative Physiology.B: Biochemical, Systemic, and Environmental Physiology, 2008, 178:235-247.
43. McNab B.K., On the utility of uniformity in the definition of basal rate of metabolism, Physiological Zoology, 1997, 70:718-720.
44. McNab B.K., The influence of body mass, climate, and distribution on the energetics of South Pacific pigeons, Comparative Biochemistry and Physiology. Part A: Molecular & Integrative Physiology, 2000, 127:309-329.
45. McNab B.K., Energetics of toucans, a barbet, and a hornbill: implications for avian frugivory, The Auk, 2001, 118:916-933.
46. McNab B.K., The physiological ecology of vertebrates: a view from energetics, Cornell University Press, Ithaca (NY), 2002, 576 p.
47. McNab B.K., Ecology shapes bird bioenergetics, Nature, 2003, 426:620-621.
48. McNab B.K., Food habits and the evolution of energetics in birds of paradise (Paradisaeidae), Journal of Comparative Physiology. B: Biochemical, Systemic, and Environmental Physiology, 2005, 175:117-132.
49. McNab B.K., Ecological factors affect the level and scaling of avian BMR, Comparative Biochemistry and Physiology. Part A: Molecular & Integrative Physiology, 2009, 152:22-45.
50. McNab B.K., Extreme measures: the ecological energetics of birds and mammals, The University of Chicago Press, Chicago (IL), 2012, 336 p.
51. McNab B.K., The ecological energetics of birds in New Guinea, Bulletin of the Florida Museum of Natural History, 2013, 52:95-159.
52. McNab B.K., Analysis of factors that influence energy expenditure in honeyeaters (Meliphagidae), New Zealand Journal of Zoology, 2016, 43:179-190.
53. McNab B.K., Bonaccorso F.J., The energetics of Australasian swifts, frogmouths, and nightjars, Physiological Zoology, 1995, 68:245-261.
54. Møller A.P., Evidence of larger impact of parasites on hosts in the tropics: investment in immune function within and outside the tropics, Oikos, 1998, 82:265-270.
55. Moreau R.E., Clutch-size - a comparative study, with special reference to African birds, Ibis, 1944, 86:286-347.
56. Moreno J., Moult-breeding overlap and fecundity limitation in tropical birds: a link with immunity?, Ardeola, 2004, 51:471-476.
57. Murray B.G., Evolution of clutch size in tropical species of birds, Ornithological Monographs, 1985, 36:505-519.
58. Peach W.J., Hanmer D.B., Oatley T.B., Do southern African songbirds live longer than their European counterparts?, Oikos, 2001, 93:235-249.
59. Pettit T.N., Ellis H.I., Whittow G.C., Basal metabolic rate in tropical seabirds, The Auk, 1985, 102:172-174.
60. Prinzinger R., Göppel R., Lorenz A., Kulzer E., Body temperature and metabolism in the red-backed mousebird (Colius castanotus) during fasting and torpor, Comparative Biochemistry and Physiology. Part A: Physiology, 1981, 69A:689-692.
61. Prinzinger R., Jackel S., Energy metabolism, respiration frequency and 02-consumption per breathing act in 11 different sunbird species daring day and night, Experientia, 1986, 42:1002-1003.
62. Prinzinger R., Lübben I., Schuchmann K.L., Energy metabolism and body temperature in 13 sunbird species (Nectariniidae), Comparative Biochemistry and Physiology Part A: Physiology, 1989, 92:393-402.
63. Ricklefs R.E., Fecundity, mortality and avian demography, в книге Breeding biology of birds (под ред. Farner D.S.), National Academy of Sciences, Washington D.C., 1973, p.366-435.
64. Ricklefs R.E., Growth rates of birds in the humid New World tropics, Ibis, 1976, 118:179-207.
65. Ricklefs R.E., The optimization of growth rate in altricial birds, Ecology, 1984, 65:1602-1616.
66. Ricklefs R.E., Wikelski M., The physiology/life-history nexus, Trends in Ecology & Evolution, 2002, 17:462-468.
67. Russell E.M., Yom-Tov Y., Geffen E., Extended parental care and delayed dispersal: northern, tropical, and southern passerines compared, Behavioral Ecology, 2004, 15:831-838.
68. Schaefer H.C., Eshiamwata G.W., Munyekenye F.B., Böhning-Gaese K., Life-history of two African Sylvia warblers: low annual fecundity and long post-fledging care, Ibis, 2004, 146:427-437.
69. Scholander P.F., Hock R., Walters V., Johnson F., Irving L., Heat regulation in some arctic and tropical mammals and birds, Biological Bulletin, 1950, 99:237-258.
70. Scholander P.F., Walters V., Hock R., Irving L., Adaptation to cold in arctic and tropical mammals and birds in relation to body temperature, insulation, and basal metabolic rate, Biological Bulletin, 1950, 99:259-271.
71. Schuchmann K.L., Energieumsatz in Abhängigkeit von der Umgebungstemperatur beim Kolibri Ocreatus u. underwoodii, Journal für Ornithologie, 1979, 120:311-315.
72. Seavy N.E., Physiological correlates of habitat association in East African sunbirds (Nectariniidae), Journal of Zoology, 2006, 270:290-297.
73. Skutch A.F., Clutch size, nesting success, and predation on nests of Neotropical birds, reviewed, Ornithological Monographs, 1985, 36:575-594.
74. Snow D.W., Lill A., Longevity records for some neotropical land birds, The Condor, 1974, 76:262-267.
75. Tarwater C.E., Brawn J.D., The post-fledging period in a tropical bird: patterns of parental care and survival, Journal of Avian Biology, 2010, 41:479-487.
76. Thompson L.J., Brown M., Downs C.T., Circannual rhythm of resting metabolic rate of a small Afrotropical bird, Journal of Thermal Biology, 2015, 51:119-125.
77. Thompson L.J., Brown M., Downs C.T., The effects of long-term captivity on the metabolic parameters of a small Afrotropical bird, Journal of Comparative Physiology B, 2015, 185:343-354.
78. Thompson L.J., Brown M., Downs C.T., Seasonal metabolic variation over two years in an Afrotropical passerine bird, Journal of Thermal Biology, 2015, 52:58-66.
79. Tieleman B.I., Dijkstra T.H., Lasky J.R., Mauck R.A., Visser G.H., Williams J.B., Physiological and behavioural correlates of life-history variation: a comparison between tropical and temperate zone house wrens, Functional Ecology, 2006, 20:491-499.
80. Tieleman B.I., Williams J.B., Ricklefs R.E., Klasing K.C., Constitutive innate immunity is a component of the pace-of-life syndrome in tropical birds, Proceedings of the Royal Society B: Biological Sciences, 2005, 272:1715-1720.
81. Van de Ven T.M.F.N., Mzilikazi N., McKechnie A.E., Seasonal metabolic variation in two populations of an Afrotropical euplectid bird, Physiological and Biochemical Zoology, 2013, 86:19-26.
82. Vleck C.M., Vleck D., Metabolic rate in five tropical bird species, The Condor, 1979, 81:89-91.
83. Wagner D.N., Mineo P.M., Sgueo C., Wikelski M., Schaeffer P.J., Does low daily energy expenditure drive low metabolic capacity in the tropical robin, Turdus grayi?, Journal of Comparative Physiology. B: Biochemical, Systemic, and Environmental Physiology, 2013, 183:833-841.
84. Weathers W.W., Temperature regulation in the dusky munia, Lonchura fuscans (Cassin) (Estrildidae), Australian Journal of Zoology, 1977, 25:193-199.
85. Weathers W.W., Climatic adaptation in avian standard metabolic rate, Oecologia, 1979, 42:81-89.
86. Weathers W.W., Energetics and thermoregulation by small passerines of the humid, lowland tropics, The Auk, 1997, 114:341-353.
87. Weathers W.W., Stiles F.G., Energetics and water balance in free-living tropical hummingbirds, The Condor, 1989, 91:324-331.
88. Wiersma P., Chappell M.A., Williams J.B., Cold- and exercise-induced peak metabolic rates in tropical birds, Proceedings of the National Academy of Sciences of the United States of America, 2007, 104:20866-20871.
89. Wiersma P., Muñoz-Garcia A., Walker A., Williams J.B., Tropical birds have a slow pace of life, Proceedings of the National Academy of Sciences of the United States of America, 2007, 104:9340-9345.
90. Wiersma P., Nowak B., Williams J.B., Small organ size contributes to the slow pace of life in tropical birds, Journal of Experimental Biology, 2012, 215:1662-1669.
91. Wikelski M., Spinney L., Schelsky W., Scheuerlein A., Gwinner E., Slow pace of life in tropical sedentary birds: a common-garden experiment on four stonechat populations from different latitudes, Proceedings of the Royal Society B: Biological Sciences, 2003, 270:2383-2388.
92. Williams J.B., Miller R.A., Harper J.M., Wiersma P., Functional linkages for the pace of life, life-history, and environment in birds, Integrative and Comparative Biology, 2010, 50:855-868.
93. Wolf L.L., Hainsworth F.R., Environmental influence on regulated body temperature in torpid hummingbirds, Comparative Biochemistry and Physiology. Part A: Physiology, 1972, 41:167-173.
94. Yarbrough C.G., The influence of distribution and ecology on the thermoregulation of small birds, Comparative Biochemistry and Physiology, 1971, 39A:235-266.