HỆ VẬN CHUYỂN THUỐC LIPOSOME TRONG ĐIỀU TRỊ Y HỌC: NGHIÊN CỨU VÀ ỨNG DỤNG

Nguyễn Hồng Quang1
1 Viện Y sinh nhiệt đới, Trung tâm Nhiệt đới Việt - Nga

Nội dung chính của bài viết

Tóm tắt

LIPOSOMAL DELIVERY SYSTEMS IN MEDICAL TREATMENT: RESEARCH AND APPLICATION

Liposomes are spherical vesicles composed of one or more lipid bilayers, involving an aqueous compartment. The lipid molecules possess head groups which are attracted to water molecules and organize themselves in such a way as to point toward the aqueous cavity, whereas the hydrocarbon tails are repelled by the water molecules and point in the opposite direction. The pioneering work of countless liposome researchers over almost 6 decades led to the development of important technical advances such as remote drug loading. Since then, the technology has grown considerably, and pioneering recent work in liposome-based delivery systems has brought about remarkable developments with significant clinical implications. This includes long-circulating-, stimuli-responsive-, nebulized-, and elastic- liposomes for topical, triggered release liposomes, liposomes containing nucleic acid polymers, ligand-targeted liposomes and liposomes containing combinations of drugs. There are several clinical trials in such diverse areas as the delivery of anti-cancer, anti-fungal and antibiotic drugs, gene medicines, anesthetics, and anti-inflammatory drugs. Based on the aggregate results from several different studies, this article provides readers a survey view about the ability to drug delivery one of the most typical nano structures - liposome and the use of this structure for various therapeutic purposes, including anticancer therapy, antibacterial therapy and gene therapy.

Chi tiết bài viết

Tài liệu tham khảo

1. Basu N., Sett R., Das P.K., Down-regulation of mannose receptors on macrophages after infection with Leishmania donovani, Biochem. J, 1991, 277:451-456.
2. Boulikas T., Stathopoulos G.P., Volakakis N., Vougiouka M., Systemic Lipoplatin infusion results in preferential tumor uptake in human studies, Anticancer Research, 2005, tr.3031-3039.
3. Carlton L.G., John F., Glenn J.S., Charles O.T., Pathogenesis of bacterial infections in animals, Fourth Edition. US: Wiley-Blackwell, 2010, 664 p.
4. Cencig S., Coltel N., Truyens C., Parasitic loads in tissues of mice infected with Trypanosoma cruzi and treated with AmBisome, PLoS Negl. Trop. Dis, 2011, 5(6):е1216.
5. Crystal R.G., Transfer of genes to humans: early lesions and obstacles to success, Science 270, 1995:404-410.
6. Dana M.S., Recent advances in microbiology, Canada: Apple Academic Press Inc, 2012, tr.77-89.
7. Daniel A. Balazs, WT. Godbey, Liposome for use in gene delivery, Journal of Drug Delivery, 2011, Article ID 326497.
8. Deng J.C., Moore T.A., Newstead M.W., CpG oligodeoxynucleotides stimulate protective innate immunity against pulmonary Klebsiella infection, J. Immunol, 2004, 173:5148-5155.
9. Gewirtz A.M., On future's doorstep: RNA interference and the pharmacopeia of tomorrow, J. Clin. Invest, 2007, 117 (12):3612-3614.
10. Gray M.J., Van Buren G., Dallas N.A., Therapeutic targeting of neuropilin-2 on colorectal carcinoma cells implanted in the murine liver, J. Natl. Cancer Inst, 2008, 100:109-120.
11. Han S.E., Kang H., Shim G.Y., Novel cationic cholesterol derivative-based liposomes for serum-enhanced delivery of siRNA, Int. J. Pharm, 2008, 353:2602-69.
12. Hirai M., Minematsu H., Hiramatsu Y., Kitagawa H., Otani T., Iwashita S., Kudoh T., Chen L., Li Y., Okada M., Salomon D.S., Igarashi K., Chikuma M., Seno M., Novel and simple loading procedure of cisplatin into liposomes and targeting tumor endothelial cells, Int. J. Pharm, 2010, 391:274-283.
13. Hughes J., Yadava P., Mesaros R., Liposomal siRNA delivery, Methods Mol. Biol, 2010, 605:445-459.
14. Irma A.J.M., Bakker-Woudenberg., Storm G., Woodle M.C, Liposomes in the Treatment of Infections. Journal of Drug Targeting, 1994, 5:363-371.
15. Kadry A.A., Al-Suwayeh S.A., Abd-Allah A.R., Treatment of experimental osteomyelitis by liposomal antibiotics, J. Antimicrob. Chemother, 2004, 54:1103-1108.
16. Kapoor M., Burgess D.J., Efficient and safe delivery of siRNA using anionic lipids: formulation optimization studies, Int. J. Pharm, 2012, 432:80-90.
17. Kawaura C., Hasegawa S., Hirashima N., Nakanishi M., Monosialoganglioside containing cationic liposomes with a cationic cholesterol derivative promote the efficiency of gene trans fection in mammalian culture cells, Biol. Pharm. Bull, 2000, 23:778-780.
18. Krieger M., Eckstein N., Schneider V., Koch M., Royer H.D., Jaehde U., Bendas G., Overcoming cisplatin resistance of ovarian cancer cells by targeted liposomes in vitro, Int. J. Pharm, 2010, 389:10-17.
19. Mugabe C., Halwani M., Azghani A.O., Mechanism of enhanced activity of liposome-entrapped aminoglycosides against resistant strains of Pseudomonas aeruginosa, Antimicrob. Agents Chemother, 2006, 50:2016-2022.
20. Omri A., Ravaoarinoro M., Poisson M., Incorporation, release and in vitro antibacterial activity of liposomal aminoglycosides against Pseudomonas aeruginosa, J. Antimicrob. Chemother, 1995, 36:631-639.
21. Omri A., Ravaoarinoro M., Comparison of the bactericidal action of amikacin, netilmicin and tobramycin in free and liposomal formulation against Pseudomonas aeruginosa, Chemotherapy, 1996, 42:170-176.
22. Omri A., Suntres Z.E., Shek P.N., Enhanced activity of liposomal polymyxin B against Pseudomonas aeruginosa in a rat model of lung infection, Biochem. Pharmacol, 2002, 64:1407-1413.
23. Ozpolat B., Sood A., Lopez-Berestein G., Nanomedicine based approaches for the delivery of siRNA in cancer, J. Intern. Med, 2010, 267:44-53.
24. Puangpetch A., Anderson R., Huang Y.Y., Cationic liposomes extend the immunostimulatory effect of CpG oligodeoxynucleotide against Burkholderia pseudomallei infection in BALB/c mice, Clin Vaccine Immunol, 2012, 19:675-683.
25. Rathore A., Jain A., Gulbake A., Mannosylated liposomes bearing Amphotericin B for effective management of visceral Leishmaniasis, J. Liposome Res, 2011, 21:3333-3340.
26. Sharma A., Sharma U.S., Liposomes in drug delivery: progress and limitations, Int. J. Pharm, 1997, 154:123-140.
27. Spagnou S., Miller A.D., Keller M., Lipidic carriers of siRNA: differences in the formulation, cellular uptake, and delivery with plasmid DNA, Biochemistry, 2004, 43:13348-13356.
28. Tomlinson E., Rolland A.P., Controllable gene therapy: pharmaceutics of non viral gene delivery systems, J. Contr. Rel, 1996, 39:357-372.
29. Tseng Y.C., Mozumdar S., Huang L., Lipid-based systemic delivery of siRNA, Advanced Drug Delivery Reviews, 2009, 61:721-731.
30. Yang T., Cui F.D., Choi M.K., Cho J.W., Chung S.J., Shim C.K., Kim D.D., Enhanced solubili ty and stability of PEGylated liposomal paclitaxel: In vitro and in vivo evaluation, Int. J. Pharm, 2007, 338:317-326.
31. Yoshinobu F., Hideki I., Nanoparticles for cancer therapy and diagnosis, Advanced Powder Technology, 2006, 17:1-28.
32. Zhang J.A., Anyarambhatla G., Ma L., Ugwu S., Xuan T., Sardone T., Ahmad I., Development and characterisation of a novel Cremophor EL free liposome based paclitaxel (LEP-ETU) formulation, Eur. J. Pharm. Biopharm, 2005, 59:177-187.
33. Weissig V., Liposomes: Methods and Protocols. Vol. 1: Pharmaceutical Nanocarriers, New York: Humana Press, 2010, tr.1-27.
34. Швец В.И., Каплун А.П., Краснопольский Ю.М., Степанов А.Е., Чехонин В.П., От липосом семидесятых к нанобиотехнологии XXI века, Рос. Нанотехнологии, 2008, Т.3, 11:52-67.