NGHIÊN CỨU ẢNH HƯỞNG CỦA SINH VẬT BÁM BẨN TRONG MÔI TRƯỜNG NƯỚC BIỂN TỚI HIỆU QUẢ BẢO VỆ CHỐNG ĂN MÒN BẰNG PHƯƠNG PHÁP PROTECTOR
Nội dung chính của bài viết
Tóm tắt
STUDYING ON THE IMPACT OF BACTERIA IN THE SEA WATER TO ANTI-CORROSION PROTECTIVE EFFICIENCY OF THE METHOD USING PROTECTOR
The use of zinc protector for corrosion protection against steel and alloys in seawater are usually calculated according to the major technical parameters including electrochemical equivalent, location, shape, size and weight. However, in tropical marine environmental conditions, bio-fouling is participated. They grew very quickly and covered the entire surface of both the protector and materials and caused physical barriers which affect the material protection. The study was done in natural seawater and sterilized seawater in 12 months. The results indicate that bio-fouling strongly affected the corrosion rate of mild steel in seawater. However it also indicated that the zinc-based protector still guarantees protection effectivity even when it was completely coated by macrofoulers. In addition, at two months time point, the biomass on the protected samples was less than that compared to the unprotected samples. This can be explained by the fact that the sample surface is smoother (due to less corrosion) and therefore marine organisms are more difficult to foul. The effects of biofouling on the corrosion rate of protected mild steel samples by zinc protector are negligible.
Từ khóa
Biofouling, cathodic protection, zinc protector
Chi tiết bài viết
Tài liệu tham khảo
2. Bùi Bá Xuân, Nghiên cứu công nghệ chế tạo Protector nền Zn dùng để bảo vệ chống ăn mòn các kết cấu thép và công trình vùng biển, Luận án TS - ĐH Bách khoa Tp.HCM, 2010, tr.33-40.
3. Trịnh Xuân Sén, Ăn mòn và bảo vệ kim loại, NXB Đại học quốc gia Hà Nội 2006, tr.142-146.
4. Tiêu chuẩn TCVN: 6024-1995, Prôtectơ nền kẽm - Yêu cầu kỹ thuật và phương pháp thử.
5. ASTM G1-90, Preparing, Cleaning, and Evaluating Corrosion Test Specimens, 1999.
6. ASTM G52 - 00, Standard Practice for Exposing and Evaluating Metals and Alloys in Surface Seawater, 2006.
7. Autoclaves for sterilization “Presoclave II” 50 and 80 -Data Sheet-Selecta.com.
8. Blackwooda D.J., Lim C.S., Teo S.L., Influence of fouling on the efficiency of sacrificial anodes in providing cathodic protection in Southeast Asian tropical seawater, 2010.
9. Francis P.E., Cathodic Protection, BM Corporation, 2007, p.1-6.
10. Guenzenec J.G., Dowling N.J., White D.C., Relationship between bacterial colonlization and cathodic current density associated with milde steel surface, Biofouling, 8:142-145.
11. Kharchenko U.A., Beleneva I.A., Antifouling potential of a marine strain, Pseudomonas aeruginosa 1242, isolated from brass microfouling in Vietnam, International Biodeterioration & Biodegradation, 2012.
12. Summary report (generic + industrial data) on scaling, fouling and corrosion parameters UCM, HOL, PTS, VITO, 2010, p.6-11.
13. ГОСТ 9.908-85, Единая система защиты от коррозии и старения. Металлы и сплавы. Методы определения показателей коррозии и коррозионной стойкости, Межгосударственный станд арт, 1999.
14. ГОСТ 9.907-2007, Единая система защиты от коррозии и старения. Металлы, сплавы, покрытия металлические. Методы удаления продуктов коррозии после коррозионных испытаний.
15. Харченко У.В., Беленева И.А., Ковальчук Ю.Л., Левин А.Л., Нгуен Куанг Тан, Май Ван Минь, Ли Тхи Ми Хиеп, Особенности коррозии и обрастания конструкционных материалов в морских тропических водах, поиск новых средств и методов защиты морских сооружений и техники, Отчет по темам «Эколан Т-1.2», 2011, c.18-23.