SYNTHESIS AND OPTICAL PROPERTIES OF HYPERBRANCHED DONOR - ACCEPTOR CONJUGATED POLYMERS BASED ON PHENOXAZINE, BENZO[C][1,2,5] THIADIAZOLE AND TRIPHENYLAMINE

Le Thanh Duong1, Tran Hung Dat1, Doan Kim Bao1, Truong Thi Thanh Nhung1, Nguyen Thi Le Thu2, Tran Duc Chau2, Dinh Thi Van3, Nguyen Tran Ha1
1 National Key Laboratory of Polymer and Composite Materials, Ho Chi Minh City University of Technology, Vietnam National University - Ho Chi Minh City (VNU-HCM)
2 Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University
3 Vietnam-Russia Tropical Center

Nội dung chính của bài viết

Tóm tắt

SYNTHESIS AND OPTICAL PROPERTIES OF HYPERBRANCHED DONOR - ACCEPTOR CONJUGATED POLYMERS BASED ON PHENOXAZINE, BENZO[C][1,2,5] THIADIAZOLE AND TRIPHENYLAMINE

The novel hyperbranched conjugated polymers containing phenoxazine, triphenylamine and benzo[c] [1,2,5] thiadiazole moieties were successfully synthesized via the direct (hetero) arylation polymerization method. The obtained polymers were characterized via 1H NMR, GPC and FTIR to determine the chemical structure of polymers. In addition, the optical properties of polymers were investigated by UV-vis spectroscopies and fluorescent spectroscopies. The band gap of polymers were estimated about 1.93 to 2.5 eV due to the optical onset absorption of polymers. Moreover, the resulted conjugated polymers exhibited the thermal stability up to 350oC that are suitable for organic solar cells application.

Chi tiết bài viết

Tài liệu tham khảo

1. Kim Y. H., Webster O. W., Water soluble hyperbranched polyphenylene: ‘‘a unimolecular micelle”, J. Am. Chem. Soc., 1990, 112:4592-4593.
2. Hawker C. J., Lee R., Fréchet J. M. J., One-step synthesis of hyperbranched dendritic polyesters, J. Am. Chem. Soc., 1991, 113:4583-4588.
3. Malmström E., Johansson M., Hult A., Hyperbranched aliphatic polyesters, Macromolecules, 1995, 28:1698-1703.
4. Guo T., Guan, R., Zou J., Liu J., Ying L., Yang W.,; Wu H., Cao Y., Red light-emitting hyperbranched fluorene-alt-carbazole copolymers with an iridium complex as the core, Polymer Chemistry, 2011, 2:2193-2203.
5. Guo T., Yu L., Yang Y., Li, Y., Tao Y., Hou Q., Ying L., Yang W., Wu H., Cao Y., Hyperbranched red light-emitting phosphorescent polymers based on iridium complex as the core, J. Lumin., 2015, 167:179-185.
Hwang S. H., Shreiner C. D., Moorefield C. N., Newkome G. R., Recent progress and applications for metallodendrimers, New J. Chem., 2007, 31:1192-1217.
Liu F., Liu J. Q., Liu R. R., Hou X. Y., Xie L. H., Wu H. B., Tang C., Wei W., Cao Y., Huang W., Hyperbranched framework of interrupted π‐conjugated polymers end‐capped with high carrier‐mobility moieties for stable light‐emitting materials with low driving voltage, J. Polym. Sci. Part A: Polym. Chem., 2009, 47:6451-6462.
Wu Y., Li J., Liang W., Yang J., Sun J., Wang H., Liu X., Xu B., Huang W., Hyperbranched fluorene-alt-carbazole copolymers with spiro[3.3]heptane-2,6-dispirofluorene as the core and their application in white polymer light-emitting devices, RSC Advances 2015, 5:49662-49670.
Sun J., Yang J., Zhang C., Wang H., Li J., Su S., Xu H., Zhang T., Wu Y., Wong W. Y., Xu B., A novel white-light-emitting conjugated polymer derived from polyfluorene with a hyperbranched structure, New J. Chem., 2015, 39:5180-5188.
Zheng M., Bai F., Zhu D., New light emitting materials: Alternating copolymers with hole transport and emitting chromophores, J. Appl. Polym. Sci., 1999, 74:3351-3358.
Liu Y., Yang C., Li Yongjun, Li Yuliang, Wang S., Zhuang J., Liu H., Wang N., He X., Li Yongfang, Zhu D., Synthesis and photovoltaic characteristics of novel copolymers containing poly(phenylenevinylene) and triphenylamine moieties connected at 1,7 bay positions of perylene bisimide, Macromolecules, 2005, 38:716-721.
Qua J., Shiotsuki M., Kobayashi N., Sanda F., Masuda T., Synthesis and properties of carbazole-based hyperbranched conjugated polymers, Polymer, 2007, 48:6481-6490.
Neto B. A. D., Lapis A. A. M., Da Silva Júnior E. N., Dupont J., 2,1,3-Benzothiadiazole and derivatives: Synthesis, properties, reactions, and applications in light technology of small molecules, Eur. J. Org. Chem., 2013, 2:228-255.
Tian H., Yang X., Cong J. Y., Chen R., Liu J., Hao Y., Hagfeldt A., Sun L. C., Tuning of phenoxazinechromophores for efficient organic dye-sensitized solar cells, Chem. Commun., 2009, 41:6288-6290.
Tian H., Bora I., Jiang X., Gabrielsson E., Karlsson K. M., Hagfeldt A., Sun L., Modifying organic phenoxazine dyes for efficient dye-sensitized solar cells, J. Mater. Chem., 2011, 21:12462-12472.
Reddy M. A., Vinayak B., Suresh T., Niveditha S., Bhanuprakash K., Singh S. P., Islam A., Han L., Chandrasekharam M., Highly conjugated electron rich thiophene antennas on phenothiazine and phenoxazine-based sensitizers for dye sensitized solar cells, Synthetic Metals, 2014, 195:208-216.
Hung W. I., Liao Y. Y., Hsu C. Y., Chou H. H., Lee T. H., Kao W. S., Lin J. T., High-Performance dye-sensitized solar cells based on phenothiazine dyes containing double anchors and thiophene spacers, Chem. Asian J., 2014, 9:357-366.
Zhu Y., Babel A., Jenekhe S. A., Phenoxazine-based conjugated polymers:  A new class of organic semiconductors for field-effect transistors, Macromolecules, 2005, 38:7983-7991.
Cheng M., Chen C., Yang X., Huang J., Zhang F., Xu B., Sun L., Novel small molecular materials based on phenoxazine core unit for efficient bulk heterojunction organic solar cells and perovskite solar cells, Chem. Mater., 2015, 27:1808-1814.
Bae J. H., Lim S. J., Choi J., Yuk S. B., Namgoong J. W., Ko J. H., Lee W., Kim J. P., Effects of introducing functional groups on the performance of phenoxazine-based dye-sensitized solar cells, Dyes and Pigments, 2009, 162:905-915.