ĐẶC ĐIỂM QUANG HỢP CỦA MỘT SỐ LOÀI THỰC VẬT RỪNG NGẬP MẶN CẦN GIỜ, THÀNH PHỐ HỒ CHÍ MINH
Nội dung chính của bài viết
Tóm tắt
PHOTOSYNTHETIC CHARACTERISTICS OF SOME MANGROVES IN CAN GIO MANGROVE FOREST, HO CHI MINH CITY
The aim this research work was to assess the intensity of photosynthesis at the leaf level of 3 common plant species: Ceriops zippeliana, Excoecaria agallocha, Avicennia officinalis, natural origin in a Can Gio mangrove forest. From May 2020 to September 2020, the databases of diurnal dynamics of the intensity of photosynthesis and PAR (Photosynthetic Active Radiation) for different parts of the tree crown were investigated. The Michaelis - Menten equation was used to describe the dependence of photosynthesis on PAR. The coefficients equation was used to assess the photosynthetic characteristics of the tree leaf. The study showed that the decline of leaf photosynthetic capacity in all 3 subjects studied may be due to the cumulative decline of chlorophyll fluorescence. Photosynthetic intensity of the 3 plant species has different variation according to environmental factors but generally depends on leaf temperature and PAR. Specifically, the optimum temperature for the growth of C. zippeliana is between 29 and 33°C with An (Photosynthetic yield) between 12.8 and 15.4 mmol m-2s-1; optimum temperature for the growth of E. agallocha is from 28 to 31ºC with An in the range of 4.5 to 9.6 mmol m-2s-1; the optimum temperature for growth of A. officinalis are 2 temperature ranges from 28 to 31ºC for leaves at the top and from 26 to 28ºC for leaves in the middle and under the canopy. Based on the obtained correlations, mathematical models of photosynthetic intensity as a function of PAR and leaf temperature were developed. In general, the results show that the inhibitory factor affecting photosynthesis can be the amount of photosynthetic irradiance that is higher than the allowable level and the deviation of leaf temperature from the optimal values for plant growth development of C. zippeliana, E. agallocha, A. officinalis.
Từ khóa
Leaf gas exchange, photosynthesis, Ceriops zippeliana, Excoecaria agallocha, Avicennia officinalis, Can Gio mangrove forest, Li-6800
Chi tiết bài viết
Tài liệu tham khảo
2. Komiyama A., Topics on the plant root: root biomass and carbon accumulation in mangrove forest, Agr. Hort, 2004, 79:58-61
3. Komiyama A., Poungparn S. and Kato S., Common allometric equations for estimating the tree weight of mangroves, Journal of Tropical Ecology, 2005, 21:471-477.
4. Clough B. F., Ong J. E. and Gong W. K., Estimating leaf area index and photosynthetic production in canopies of the mangroves Rhizophora apiculata, Marine Ecology Progress Series., 1997, 159:285-292.
5. Clough B. F., Mangrove forest productivity and biomass accumulation in Hinchinbrook Channel, Australia, Mangroves and Salt Marshes., 1998, 2:191-198.
6. Ong J. E., Gong W. K. and Clough B. F., Structure and productivity of a 20-year-old stand of Rhizophora apiculata Bl. Mangrove forest, Journal of Biogeography, 1995, 22:417-424.
7. Cheeseman J. M., Clough B. F., Carter D. R., Lovelock C. E., Ong J. E., The analysis of photosynthetic performance in leaves under field conditions: A case study using Bruguiera mangroves, Photosynthesis Research, 1991, 29:11-22.
8. Moore R. T., Miller P. C., Ehleringer J. and Lawrence W., Seasonal trends in gas exchange characteristics of three mangrove species, Photosynthetica, 1973, 7:387-394
9. Tri N. H., Hong P. N., Manh M. N. T., Tuan M. L. X., Anh M. P. H., Tho M. N. H., Cuc M. N. K., Giang M. L. H., Tuan M. L. D., Valuation of the Mangrove Ecosystem in Can Gio Mangrove Biosphere Reserve, Vietnam, UNESCO/MAB Programme National Committee, Center for Natural Resources and Environmental Studies (CRES), Hanoi University of Economics (HUE) and and Management Board of Can Gio Mangrove Biosphere Reserve, 2000, Hanoi.
10. Lưu Đ. P., Avilov V. K., Thịnh N. V, Ước tính khả năng trao đổi CO2 của Hệ sinh thái Rừng ngập mặn Cần Giờ bằng phương pháp Eddy-covariance, Tạp chí Sinh học, 2019, 41(2se):377-384.
11. Peter J. Melcher, N. Michele Holbrook, Michael J. Burns, Maciej A. Zwieniecki, Alexander R. Cobb, Timothy J. Brodribb, Brendan Choat and Lawren Sack, Measurements of stem xylem hydraulic conductivityin the laboratory and field, Methods in Ecology and Evolution, 2012, 3:685-694.
12. Farquhar G. D. and Von Caemmerer S., Modelling of photosynthetic response to environmental conditions, In Physiological Plant Ecology II: Water Relations and Carbon Assimilation, Encyclopedia of Plant Physiology, New Series, Springer-Verlag, Berlin, 1982, 12 B:549-587.
13. Michaelis L. and Menten M., Die Kinetik der Invertinwirkung, Biochemische Zeitschrift., 1913, 49:333-369.
14. Gardiner E. S. and Krauss K. W., Photosynthetic light responseof flooded cherrybark oak (Quercus pagoda) seedlings grown intwo light regimes, Tree Physiology., 2001, 21:1103-1111.
15. Krauss K. W., Allen J. A., Influences of salinity and shade on seedling photosynthesis and growth of two mangrove species, Rhizophora mangle and Bruguiera sexangula, Aquatic Botany, 2003, 77:311-324.
16. Ball M. C., Critchley C., Photosynthetic responses to irradiance by the Grey Mangrove, Avicennia marina, grown under different light regimes, Plant Physiology, 1982, 70:1101-1106.
17. Kitao M., Utsugi H., Kuramoto S., Tabuchi R., Fujimoto K., Lihpai S., Lightdependent photosynthetic characteristics indicated by chlorophyll fluorescence in five mangrove species native to Pohnpei Island, Micronesia, Physiologia Plantarum, 2003, 117:376-382.
18. Andrews T. J., Clough B. F., Muller G. J., Photosynthetic gas exchange and carbon isotope ratios in some mangrove species in North Queensland, In: Teas HJ Physiology and management of mangroves, Part of the Tasks for vegetation science book series, 1984, 9:15-23.
19. Ball M. C., Ecophysiology of mangroves, Trees, 1988, 2:129-142.
20. Agata W., Hakoyama S., Influence of light intensity, temperature and humidity on photosynthesis and transpiration of Sasa nipponica and Arundinaria pygmaea, The Botanical Magazine, 1985, 98:125-135.
21. Okimoto Y., Nose A., Katsuta Y., Tateda Y., Agarie S., Ikeda K, Gas exchange analysis for estimating net CO2 fixation capacity of mangrove (Rhizophora stylosa) forest in the mouth of river Fukido, Ishigaki Island, Japan, Plant Production Science, 2007, 10:303-313.
22. Lưu Đ. P., Georgievich Z. N., Sơn N. T., Đức N. T., Hoàn H. D., Thịnh N. V, Một số đặc điểm quang hợp của cây đước đôi (Rhizophora apiculata Blume) trong rừng ngập mặn Cần Giờ, thành phố Hồ Chí Minh, Tạp chí Khoa học và Công nghệ nhiệt đới, 2021, 22:3-15.
23. Kao W. Y., Shih C. N., Tsai T. T., Sensitivity to chilling temperatures and distribution differ in the mangrove species Kandelia candel and Avicennia marina, Tree Physiology, 2004, 24:859-864.
24. Sawada S., Effects of growth temperature on photosynthetic carbon metabolism in green plants, Plant and Cell Physiology, 1974, 15:111-120.
25. Alam B., Nair D. B., Jacob J., Low temperature stress modifies the photochemical efficiency of a tropical tree species Hevea brasiliensis: effects of varying concentration of CO2 and photon flux density, Photosynthetica, 2005, 43:247-252.