SỬ DỤNG HIỆN TƯỢNG CỘNG HƯỞNG PLASMON BỀ MẶT CỦA DUNG DỊCH NANO VÀNG ĐỂ XÁC ĐỊNH AMIKACIN TRONG MẪU DƯỢC PHẨM BẰNG PHƯƠNG PHÁP QUANG HỌC

Tô Thị Phương1, Trần Ngọc Bích1, Nguyễn Quang Khánh1, Bùi Xuân Thành1, Phạm Thị Ngọc Mai1,
1 Khoa Hoá học, Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội
Tác giả liên hệ:
Phạm Thị Ngọc Mai
Khoa Hoá học, Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội
19 Lê Thánh Tông, Hoàn Kiếm, Hà Nội
Số điện thoại: 0982384588;  Email: m.t.n.pham@gmail.com

Nội dung chính của bài viết

Tóm tắt

USING SURFACE PLASMON RESONANCE (SPR) OF NANO GOLD SOLUTION FOR DETERMINATION OF AMIKACIN IN PHARMACEUTICAL SAMPLES BY SPECTROPHOTOMETRIC METHOD

          A simple and highly sensitive spectrophotometric method for detecting amikacin was developed based on the change in surface plasmon resonance (SPR) properties of gold nanoparticles (AuNPs). The change in the AuNPs solution colour from red to blue in the presence of trace amounts of amikacin makes the method visible to the naked eye. Furthermore, with the addition of amikacin, in the UV-Vis spectrum appears another absorption band at 650 nm, and the AuNPs solution also gave a linear increase of optical absorption ratio A650/A520 with a logarithm of amikacin concentration in the range of 3 × 10-7 - 3.5 × 10-6 M. Under the optimum conditions, including 2.5 × 10-4 M gold nanoparticles solution, pH = 6 and 2 mM NaCl with an incubation time of 4 minutes, the proposed method achieved the low limit of detection (LOD) of 7.2 × 10-8 M, the limit of quantitation (LOQ) of 2.4 × 10-7 M, high precision (RSD < 5%). Therefore, the developed method can be applied to determine amikacin in pharmaceutical samples and in plasma and urine samples.

Chi tiết bài viết

Tài liệu tham khảo

1. Faten Farouk, Hassan M. E. Azzazy, Wilfried M. A. Niessen, Challenges in the determination of aminoglycoside antibiotics, a review, Analytica Chimica Acta, 2015, 890:21-43.
2. Jin-Zhong Xu, Jun-Jie Zhu, Hui Wang, Hong-Yuan Chen, Nano-sized copper oxide modified carbon paste electrodes as an amperometric sensor for amikacin, Analytical Letters, 2003, 36:2723-2733.
3. Shigeyuki Oguri, Yasuyoshi Miki, Determination of amikacin in human plasma by high-performance capillary electrophoresis with fluorescence detection, Journal of Chromatography B: Biomedical Sciences and Applications, 1996, 686(2):205-210.
4. Gordana Brajanoski, Jos Hoogmartens, Karel Allegaert, Erwin Adams, Determination of amikacin in cerebrospinal fluid by high-performance liquid chromatography with pulsed electrochemical detection, Journal of Chromatography B, 2008, 867:149-152.
5. Deguang Li, Shun He, Yufang Deng, Guanglong Ding, Hanwen Ni, Yongsong Cao, Development and validation of an HPLC method for determination of amikacin in water samples by solid phase extraction and pre-column derivatization, Bulletin of Environmental Contamination and Toxicology, 2014, 93:47-52.
6. John Turkevich, Peter Cooper Stevenson, James Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discussions of the Faraday Society, 1951, 11:55-75.
7. Jiaqi Dong, Paul L. Carpinone, Georgios Pyrgiotakis, Philip Demokritou, Brij M. Moudgil, Synthesis of precision gold nanoparticles using Turkevich method, Kona Powder and Particle Journal, 2020, 37:224-232.
8. Nguyen Thu Ha, Nguyen Quang Khanh, Pham Thi Ngoc Mai, Synthesis of nano gold particles towards application as sensor for acetamiprid determination, Tạp chí phân tích Hóa, Lý và Sinh học, 2019, 24:163-167.
9. Emameian A., Ahangari A., Salouti M., Amirmozafari N., Enhanced effect of Amikacin in conjugation with gold nanoparticles as a carrier to kill Pseudomonas aeruginosa, Nanochemistry Research, 2020, 5(2):179-184.
10. Tianyu Zheng, Yuen Yee Li Sip, Michael B.Leong, Qun Huo, Linear self-assembly formation between gold nanoparticles and aminoglycoside antibiotics, Colloids and Surfaces B: Biointerfaces, 2018, 164:185-191.
11. Kim T., Lee K., Gong M., Joo S. W., Control of gold nanoparticle aggregates by manipulation of interparticle interaction, Langmuir, 2005, 21:9524-9528.
12. Mohamed Abdel-Tawab Korany, Rim Said Haggag, Marwa Adel Ragab, Osama Ahmed Elmallah, Liquid chromatographic determination of amikacin sulphate after pre-column derivatization, Journal of Chromatographic Science, 2014, 52(8):837-847.
13. Neha Sharma, Sathish Panneer Selvam, Kyusik Yun, Electrochemical detection of amikacin sulphate using reduced graphene oxide and silver nanoparticles nanocomposite, Applied Surface Science, 2020, 512:145742.
14. Chang-Zhu Yu, You-Zhao He, Guo-Ni Fu, Hai-Yang Xie, Wu-Er Gan, Determination of kanamycin A, amikacin and tobramycin residues in milk by capillary zone electrophoresis with post-column derivatization and laser-induced fluorescence detection, Journal of Chromatography B, 2009, 877(3):333-338.
15. J. M. Ramos Fernández, J. M. Bosque-Sendra, A. M. García-Campaña, F. Alés Barrero, Chemiluminescence determination of amikacin based on the inhibition of the luminol reaction catalyzed by copper, Journal of Pharmaceutical and Biomedical Analysis, 2005, 36(5):969-974.
16. Javad Hassanzadeh, Babak Rezaei Moghadam, AliSobhani-Nasab, Farhad Ahmadi, Mehdi Rahimi-Nasrabadi, Specific fluorometric assay for direct determination of amikacin by molecularly imprinting polymer on high fluorescent g-C3N4 quantum dots, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 214:451-458.