ẢNH HƯỞNG CỦA MẬT ĐỘ NUÔI ĐẾN TỐC ĐỘ LỌC CỦA HÀU THÁI BÌNH DƯƠNG Crassostrea gigas (THUNBERG, 1793)

Nguyễn Minh Hiếu1, Hoàng Trung Du1, Nguyễn Hữu Huân1, Phan Minh Thụ1, Nguyễn Trịnh Đức Hiệu1, Võ Hải Thi1, Phạm Thị Miền1, Nguyễn Kim Hạnh1
1 Viện Hải dương học, Viện Hàn lâm Khoa học và Công nghệ Việt Nam

Nội dung chính của bài viết

Tóm tắt

INFLUENCE OF STOCKING DENSITY ON FILTRATION RATE BY Crassostrea gigas (THUNBERG, 1793)

Pacific Oysters (Crassostrea gigas) is an introduced species form Japan and is raised in Vietnam waters. Relatively little is known about effect of stocking density on oyster filtration rate. So, the goal of this study investigates the filtration rate of Pacific oyster based on variation of the oyster density. The study was carried out with adult oysters of similar shell size (range from: 7.0-9.8 cm; average: 8.28±0.51 cm) collected in Nha Phu lagoon, Khanh Hoa province. The first order kinetic model and the composite exponential kinetic model were used to estimate oyster filtration rate (FR) based on the reduction of algal density over time. In which, the composite exponential kinetic model is more suitable than the first order kinetic model to estimate the Pacific oyster filtration rate (provide algal once-initial). The results of both models showed that oysters at low density gave a better filtration rate than oysters at high density and that this filtration rate was maximum: 1.28 (L/hr/g dry).

Chi tiết bài viết

Tài liệu tham khảo

1. Ruesink J. L., Lenihan H. S., Trimble A. C., Heiman K. W., Micheli F., Byers J. E. and Kay M. C., Introduction of non-native oysters: ecosystem effects and restoration implications, Annual Review of Ecology, Evolution, and Systematics, 2005, 36:643-689.
2. Lefebvre S., Barillé L. and Clerc M., Pacific oyster (Crassostrea gigas) feeding responses to a fish-farm effluent, Aquaculture, 2000, 187(1-2):185-198.
3. Fuhrmann M., Petton B., Quillien V., Faury N., Morga B. and Pernet F., Salinity influences disease-induced mortality of the oyster Crassostrea gigas and infectivity of the ostreid herpesvirus 1 (OsHV-1), Aquaculture Environment Interactions, 2016, 8:543-552.
4. Gray M. W. and Langdon C. J., Ecophysiology of the Olympia oyster, ostrea lurida, and pacific oyster, Crassostrea gigas, Estuaries and Coasts, 2018, 41(2):521-535.
5. Bougrier S., Geairon P., Deslous-Paoli J. M., Bacher C. and Jonquières G., Allometric relationships and effects of temperature on clearance and oxygen consumption rates of Crassostrea gigas (Thunberg), Aquaculture, 1995, 134(1-2):143-154.
6. Filia M., Copello M. and Colomines J., Trophic relations of oyster with environment; influence of the concentration and the size of particles, Bases biologiques de l’aquaculture, Montpellier. Ifremer. Actes de colloques, 1983, 1:63-74.
7. Joyce P. W. S., Kregting L. T. and Dick J. T. A., Relative impacts of the invasive Pacific oyster, Crassostrea gigas, over the native blue mussel, Mytilus edulis, are mediated by flow velocity and food concentration, NeoBiota, 2019, 45:19-37.
8. Đoàn Trần Tấn Đào, Tạ Ngọc Hưng và Trương Thị Bích Hồng, Ảnh hưởng của mật độ ương lên sinh trưởng và tỷ lệ sống của ấu trùng hàu Tam Bội Thái Bình Dương (Crassostrea gigas Thunberg, 1793), Tạp chí Khoa học - Công nghệ Thủy sản, 2014, 2:84-88.
9. Guillard R. R. and Ryther J. H., Studies of marine planktonic diatoms. I. Cyclotella nana hustedt and Detonula confervacea (cleve) Gran, Canadian Journal of Microbiology, 1962, 8:229-239.
10. Coughlan J., The estimation of filtering rate from the clearance of suspensions, Marine Biology, 1969, 2(4):356-358.
11. Brezonik P. L., Chemical kinetics and process dynamics in aquatic systems, CRC Press, Inc, USA, 1994, 754p.
12. Parsons T. R., Maita Y. and Lalli C. M., A Manual of chemical and biological methods for seawater analysis, Pergamon Press, Oxford, 1984, 173p.
13. Sournia A., Phytoplankton manual, UNESCO. Printed in France, 1978, 337p.
14. Dolmer P., Feeding activity of mussels Mytilus edulis related to near-bed currents and phytoplankton biomass, Journal of Sea Research, 2000, 44(3-4):221-231.
15. Riisgard H. U., Kittner C. and Seerup D. F., Regulation of opening state and filtration rate in filter-feeding bivalves (Cardium edule, Mytilus edulis, Mya arenaria) in response to low algal concentration, Journal of Experimental Marine Biology and Ecology, 2003, 284(1-2):105-127.
16. Palmer R. E., Behavioral and rhythmic aspects of filtration in the bay scallop, Argopecten irradians concentricus (Say), and the oyster, Crassostrea virginica (Gmelin), Journal of Experimental Marine Biology and Ecology, 1980, 45(2):273-295.
17. Akeyede I., Usman M. and Chiawa M. A., On consistency and limitation of paired t-test, sign and wilcoxon sign rank test, IOSR Journal of Mathematics (IOSR-JM), 2014, 10(1): 01-06.
18. Ren J., Ross A. and Schiel D., Functional descriptions of feeding and energetics of the Pacific oyster Crassostrea gigas in New Zealand, Marine Ecology Progress Series, 2000, 208:119-130.
19. Wheat E. and Ruesink J. L., Commercially-cultured oysters (Crassostrea gigas) exert top-down control on intertidal pelagic resources in Willapa Bay, Washington, USA, Journal of Sea Research, 2013, 8:33-39.
20. Gray M. W., Zu Ermgassen P., Gair J., Langdon C., Lemagie E. and Lerczak J., Spatially explicit estimates of in situ filtration by native oysters to augment ecosystem services during restoration, Estuaries and Coasts, 2019, 42:792-805.