SỬ DỤNG CÔNG CỤ GIẢI TRÌNH TỰ ddRAD TRUY XUẤT NGUỒN GỐC DI TRUYỀN CỦA CÁ CHÉP CHÂU ÂU (Cyprinus carpio carpio) VÀ CÁ CHÉP AMUR (Cyprinus carpio haematopterus) LÊN QUẦN THỂ CÁ CHÉP TỰ NHIÊN CỦA VIỆT NAM
Nội dung chính của bài viết
Tóm tắt
USING THE GENETIC ddRAD SEQUENCEING TECHNIQUES TO DETERMINE THE GENOME ORIGINATION AMONG DOMESTIC EUROPEAN COMMON CARP (Cyprinus carpio carpio) AND AMUR CARP (Cyprinus carpio haematopterus) TO THE WILD VIETNAMESE POPULATION
There are four subspecies of the common carp of the world: C. carpio carpio, C. carpio haematopterus and C. carpio viridiviolaceus and C. carpio aralensis. These subspecies habit natively in Ponto-Caspian, Far-Eastern regions, Northern Vietnam and Central Asia accordingly, but they were introduced into almost all regions with suitable environmental conditions; therefore, it is one of the most widely cultured freshwater fish species in the world. In Northern Vietnam, common carp fisheries and aquacultural production have great economic importance. Investigation of the subspecies distribution among aquacultured and wild common carps is important for the understanding of the impact of human economic activity, such as aquaculture production, on the wild environment. ddRAD sequencing was used to estimate the genetic impact of aquacultured carps to wild common carp populations of Northern Vietnam. It was shown that a part of wild carp populations has significant contribution of farmed fish ancestry. For some populations, this contribution exceeds 25% of population ancestry, but the ancestry value distributed across the most specimens of population, whereas pure aquacultured specimens are quite uncommon for wild habitat.
Từ khóa
Cyprinus carpio, Vietnamese carp, Amur carp, European carp, ddRAD
Chi tiết bài viết
Tài liệu tham khảo
2. Kohlmann K., Kersten P., Flajšhans M., Microsatellite-based genetic variability and differentiation of domesticated, wild and feral common carp (Cyprinus carpio L.) populations, Aquaculture, 2005, 247:253-266.
3. Memiş D., Kohlmann K., Genetic characterization of wild common carp (Cyprinus carpio L.) from Turkey, Aquaculture, 2006, 258:257-262.
4. Fisheries Global Information System (FAO-FIGIS), Fish. Glob. Inf. Syst. FIGIS, 2020, URL http://www.fao.org/fishery/
5. Penman D. J., Carp genetic resources for aquaculture in Asia, WorldFish Center, 2005, P.O. Box 500 GPO, 10670 Penang, Malaysia.
6. Thai B. T., Burridge C. P., Pham T. A., Austin C. M., Using mitochondrial nucleotide sequences to investigate diversity and genealogical relationships within common carp (Cyprinus carpio L.), Anim. Genet, 2005, 36:23-28.
7. Thai B. T., Pham T. A., Austin C. M., Genetic diversity of common carp in Vietnam using direct sequencing and SSCP analysis of the mitochondrial DNA control region, Aquaculture, 2006, 258:228-240.
8. Thai B. T., Burridge C. P., Austin C. M., Genetic diversity of common carp (Cyprinus carpio L.) in Vietnam using four microsatellite loci, Aquaculture, 2007, 269:174-186.
9. Hohenlohe P. A., Bassham S., Etter P. D., Stiffler N., Johnson E. A., Cresko W. A., Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags, PLoS Genet., 2010, 6, e1000862.
10. Franchini P., Monné Parera D., Kautt A. F., Meyer A., QuaddRAD: a new high-multiplexing and PCR duplicate removal ddRAD protocol produces novel evolutionary insights in a nonradiating cichlid lineage, Mol. Ecol., 2017, 26:2783-2795.
11. Sambrook J., Fritsch E. R., & Maniatis T., Molecular cloning: a laboratory manual, Cold Spring Harbor, 1989.
12. Xu P., Zhang X., Wang X., Li J., Liu G., Kuang Y., Xu J., Zheng X., Ren L., Wang G., Zhang Y., Huo, et al., Genome sequence and genetic diversity of the common carp, Cyprinus carpio, Nat. Genet., 2014, 46:1212-1219.
13. Langmead B., Wilks C., Antonescu V., Charles R., Scaling read aligners to hundreds of threads on general-purpose processors, 2017.
14. Li H., A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data, Bioinformatics, 2011, 27:2987-2993.
15. Knaus B. J., Grünwald N. J., Vcfr: a package to manipulate and visualize variant call format data in R, Mol. Ecol. Resour., 2017, 17:44-53.
16. Jombart T., Ahmed I., Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data, Bioinforma. Oxf. Engl., 2011, 27:3070-1.
17. Skotte L., Korneliussen T. S., Albrechtsen A., Estimating individual admixture proportions from next generation sequencing data, Genetics, 2013, 195:693-702.
18. Nedoluzhko A. V., et al., A new strain group of common carp: The genetic differences and admixture events between Cyprinus carpio breeds, Ecol Evol 2020, 10(12):5431-5439.
19. Quinlan A. R. and Hall I. M., BEDTools: a flexible suite of utilities for comparing genomic features, Bioinformatics, 2010, 26(6):841-842.