ĐÁNH GIÁ MỘT SỐ SINH PHẨM VÀ PHƯƠNG PHÁP TÁCH CHIẾT ADN VI KHUẨN MYCOBACTERIA TRÊN MẪU BỆNH PHẨM THU THẬP TỪ BỆNH NHÂN NHIỄM LAO

Phạm Thị Hà Giang1,2, Vũ Thị Thương2, Bùi Thị Thanh Nga2, Phạm Việt Hùng2, Phạm Xuân Thế Anh3, Lê Thị Lan Anh2,
1 Học Viện Khoa học và Công nghệ, Viện Hàn lâm Khoa học và Công nghệ Việt Nam
2 Trung tâm Nhiệt đới Việt - Nga
3 Trường Đại học Khoa học tự nhiên, Đại học Quốc gia Hà Nội
Tác giả liên hệ:
Lê Thị Lan Anh
Trung tâm Nhiệt đới Việt - Nga
Số 63, Nguyễn Văn Huyên - Nghĩa Đô - Cầu Giấy - Hà Nội
Số điện thoại: 0963122607;  Email: leanhbio@gmail.com

Nội dung chính của bài viết

Tóm tắt

EVALUATION SOME DNA EXTRACTION KITS AND METHODS FOR MYCOBACTERIA FROM SPUTUMS OF TUBERCULOSIS INFECTED CASES

Tuberculosis is still burden in developing countries, including Viet Nam. Molecular techniques such as PCR, Real-time PCR play an important role in tuberculosis diagnostics. Specimens for tuberculosis testing are complex such as sputums, gastric fluids. DNA extraction are commonly performed by commercial kits, with little study about efficacy for tuberculosis testing assays. This study describes efficacy of three kits G-Spin (Intron-Korea), RIBO- sorb (Amplisens-Russia), DNA/RNA Prep (Sacace-Italy), and Salting-out method using basic reagents. Samples were 15 sputums collected from tuberculosis infected cases. As the result, recovered ADN was highest in DNA/RNA Prep, folowed by Salting-out, G-Spin, and last by RIBO - sorb. Oder of purification value was RIBO - sorb, G-Spin, Salting-out, and DNA/RNA Prep. About PCR for 16S gene, 15/15 samples were succeed in G-Spin and DNA/RNA Prep, 14/15 from RIBO-prep, 13/15 from Salting-out. Real-time PCR Mycobacterium tuberculosis (Sacace-Italy) detected 14/15 samples from G-Spin, DNA/RNA Prep, and RIBO-sorb, but Salting-out detected 13/15 samples. Therefore, G-Spin and DNA/RNA Prep show higher efficacy in amplication of 16S gene and Real-time PCR assays for tuberculosis. RIBO- sorb has equal efficacy in Realtime PCR, but more priority in purification. Salting-out perform equally in recovery and purification with commercial kits, but limited in efficacy of Mycobacteria genome amplification.

Chi tiết bài viết

Tài liệu tham khảo

1. World Health Organization, Global Tuberculosis Report, 2019.
2. Bộ Y tế Việt Nam, Quyết định 4263/QĐ-BYT về việc ban hành Hướng dẫn chẩn đoán điều trị và dự phòng bệnh lao, 2015.
3. Böddinghaus B., Wichelhaus T. A., Brade V., Bittner T., Removal of PCR inhibitors by silica membranes: evaluating the Amplicor Mycobacterium tuberculosis kit, J. Clin. Microbiol., 2001, 39(10):3750-3752.
4. Larsson, L. O., Polverino, E., Hoefsloot, W., Codecasa, L. R., Diel, R., Jenkins, S. G., & Loebinger, M. R., Pulmonary disease by non-tuberculous mycobacteria-clinical management, unmet needs and future perspectives, Expert Rev. Respir. Med., 2017, 11(12):977-989.
5. H. J. Huh, W. J. Koh, D. J. Song, C. S. Ki, and N. Y. Lee, Evaluation of the cobas TaqMan MTB test for the detection of mycobacterium tuberculosis complex according to acid-fast-bacillus smear grades in respiratory specimens, J. Clin. Microbiol., 2015, 53(2):696-698.
6. R. Gopalaswamy, S. Shanmugam, R. Mondal, and S. Subbian, Of tuberculosis and non-tuberculous mycobacterial infections - A comparative analysis of epidemiology, diagnosis and treatment, J. Biomed. Sci., 2020, 27(1):1-17.
7. S. E. Strollo, J. Adjemian, M. K. Adjemian, and D. R. Prevots, The burden of pulmonary nontuberculous mycobacterial disease in the United States, Ann. Am. Thorac. Soc., 2015, 12(10):1458.
8. Griffith, D. E., Aksamit, T., Brown-Elliott, B. A., Catanzaro, A., Daley, C., Gordin, F., Holland, S. M., Horsburgh, R., Huitt, G., Iademarco, M. F., Iseman, M., Olivier, K., Ruoss, S.,Von Reyn, C. F., Wallace, R. J., Jr, Winthrop, K., ATS, An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases, 2007, Am. J. Respir. Crit. Care Med., 175(4):367-416.
9. Bộ Y tế Việt Nam, Quy trình thực hành chuẩn xét nghiệm vi khuẩn lao, 2018.
10. I. N. De Almeida, W. Da Silva Carvalho, M. L. Rossetti, E. R. D. Costa, and S. S. De Miranda, Evaluation of six different DNA extraction methods for detection of Mycobacterium tuberculosis by means of PCR-IS6110: Preliminary study, 2013, BMC Res. Notes, 6(1):2-7.
11. Dippenaar A., Ismail N., Grobbelaar M., Optimizing liquefaction and decontamination of sputum for DNA extraction from Mycobacterium tuberculosis, Tuberculosis (Edinb), 2022, 132:102159.
12. Dilhari A., et al., Evaluation of the impact of six different DNA extraction methods for the representation of the microbial community associated with human chronic wound infections using a gel-based DNA profiling method, AMB Express. 2017, 7(1):179.
13. Doig C., Seagar A. L., Watt B., Forbes K. J., The efficacy of the heat killing of Mycobacterium tuberculosis, J. Clin. Pathol., 2002, 55(10):778-779.
14. Sabiiti W., Azam K., Esmeraldo E., Bhatt N., Rachow A., Gillespie S. H., Heat inactivation renders sputum safe and preserves Mycobacterium tuberculosis RNA for downstream molecular tests, J. Clin. Microbiol., 2019, 57(4):e01778-18.
15. Gülnur T., İsmail C., Evaluation of three DNA extraction methods of Mycobacterium tuberculosis DNA from processed sputum for testing by three real systems. Adv Biotech. & Micro., 2017, 2(2):555581.
16. Huard R. C., Lazzarini L. C., Butler W. R., Van Soolingen D., Ho J. L., PCR-based method to differentiate the subspecies of the Mycobacterium tuberculosis complex on the basis of genomic deletions, J. Clin. Microbiol., 2003, 41(4):1637-1650.