ОКРУЖАЮЩАЯ СРЕДА И ЭПИГЕНЕТИЧЕСКИЕ ЗАБОЛЕВАНИЯ ЧЕЛОВЕКА
Nội dung chính của bài viết
Tóm tắt
MÔI TRƯỜNG VÀ CÁC BỆNH GEN BIỂU SINH Ở NGƯỜI
Bài báo tổng quan đề cập tới các dữ liệu mới đây về các tác động về mặt sinh thái của yếu tố môi trường đến những biến đổi epigenetic (gen biểu sinh) và epigenomic (hệ gen biểu sinh) của bộ gen người. Đã phân tích các quan hệ giữa các biến đổi cảm ứng này, trước hết là quá trình methyl hoá DNA của các gen riêng biệt và bộ gen nói chung, với những biểu hiện bệnh lý khác nhau. Sự di truyền những biến đổi epigenetic và epigenomic dưới tác động của môi trường cho thế hệ sau, cũng như vai trò của tính di truyền epigenetic tới sự mẫn cảm bệnh tật của những thế hệ không chịu các tác động đó được đặc biệt quan tâm. Đã xem xét các cơ chế có khả năng về di truyền giữa các thế hệ của các biến đổi epigenetic và epigenomic như những điều kiện cần thiết của việc tồn tại sự khác biệt epigenetic và epigenomic giữa các quần thể.
Từ khóa
эпигенетика, эпигеномика, эпигеномные заболевания, эпигенетика популяцмй, межгенерационное наследование эпигеномов, внешние влияния, метилирование ДНК, epigenetics, epigenomics, toxicogenetics, epigenetical disease, population epigenetics, intergenerational inheritance of epigenome, external influences, DNA methylation
Chi tiết bài viết
Tài liệu tham khảo
2. Паткин Е.Л., Эпигенетические механизмы распространенных заболеваний человека, СПб.: Нестор-История, 2008, C.200.
3. Паткин Е.Л., Сучкова И.О., Регуляторные механизмы импринтинга у млекопитающих, Цитология, 2006, Т.48, С.578-594.
4. Паткин Е.Л., Квинн Д.ж., Эпигенетические механизмы предрасположенности к комплексным патологиям человека, Экол. Генетт, 2010, Т.8, С.44-56.
5. Павлов Д.С., Софронов Г.А., Румак В.С., Позняков С.П., Концепция индивидуального риска в экологической токсикологии, Медиц. Аккад. Ж. 2003, Т.3, С.98-111.
6. Позняков С.П., Румак В.С., Софронов Г.А., Умнова Н.В., Диоксины и здоровье человека. Научные основы выявления диоксиновой патологии, СПб.: Наука, 2006, C.256.
7. Румак В.С., Умнова Н.В., Софронов Г.А., Павлов Д.С., Молекулярная токсикология диоксинов, С-Петербург. "Наука" В печати, 2012.
8. Румак В.С., Софронов Г.А., Хавинсон В.Х., Прогнозирование индивидуальной и популяционной опасности экотоксикантов - медико-биологическая проблема XXI века, Вест. Росс. Военно-медиц. Акад., 2000, С.8-17.
9. Сломинская Н.А., Сучкова И.О., Клинская Т.А., Забежинский М.А. Паткин Е.Л., Особенности межгенерационной передачи экзогенной сателлитной днк быка у трансгенных мышей, Цитология., 2006, Т.48, C.522-529.
10. Aina R., Sgorbati S., Santagostino A., et al., Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp, Physiol. Plant. 2004, Vol.121, P.472-480.
11. Allis C.D., Jenuwein T., Reinberg D., Epigenetics edn. Cold Spring Harbor Laboratory Press, 2007.
12. Ahuja N., Issa J.P., Aging, methylation and cancer, Histol. Histopathol, 2000, Vol.15, P.835-842.
13. Anway M.D., Rekow S.S., Skinner M.K., Transgenerational epigenetic programming of the embryonic testis transcriptome, Genomics, 2008, Vol.91, P.30-40.
14. Anway M.D., Leathers C., Skinner M.K., Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onsetdisease, Endocrinology, 2006, Vol.147, P.5515-5523.
15. Anway M.D., Cupp A.S., Uzumcu M., Skinner M.K., Epigenetic transgenerational actions of endocrine disruptors and male fertility, Science, 2005, Vol.308, P.1466-1469.
16. Baccarelli A., Bollati V., Epigenetics and environmental chemicals, Curr. Opin. Pediatr., 2009, Vol.2, P.243-251.
17. Baccarelli A., Wright R.O., Bollati V., et al., Rapid DNA methylation changes after exposure to traffic particles, Am. J. Respir. Crit. Care Med., 2009, Vol.179, P.572-578.
18. Bocock P.N., Aagaard-Tillery K.M., Animal models of epigenetic inheritance, Semin. Reprod. Med., 2009, Vol.27, P.369-379.
19. Bock C., Walter J., Paulsen M., Lengauer T., Inter-individual variation of DNA methylation and its implications for largescale epigenome mapping, Nucl. Acids. Res., 2008, Vol.35, P.e55
20. Bonduriansky R., Day T., Nongenetic inheritance and its evolutionary implications, Annu. Rev. Ecol. Evol. Syst., 2009, Vol.40, P.103-125.
21. Bennett-Baker P.E., Wilkowski J., Burke D.T., Age-associated activation of epigenetically repressed genes in the mouse, Genetics, 2003, Vol.165, P.2055-2062.
22. Bollati V., Baccarelli A., Environmental epigenetics. Epigenetics and its implications for ecotoxicology, Heredity, 2010, Vol.105, P.105-112.
23. Bollati V., Schwartz J., Wright R., et al., Decline in genomic DNA methylation through aging in a cohort of elderly subjects, Mechan. Ageing Devel., 2009, Vol.130, P.234-239.
24. Bossdorf O., Richards C.L., Pigliucci M., Epigenetics for ecologists, Ecol. Lett., 2007, Vol.11, P.106-115.
25. Boyko A., Kathiria P., Zemp F.J., Yao Y., et al., Transgenerational changes in the genome stability and methylation in pathogen-infected plants: (virus-induced plant genome instability), Nucleic Acids Res., 2007, Vol.35, P.1714-1725.
26. Barker D., Osmond C., Forsen T.J., Kajantie E,, Eriksson J.G., Trajectories of growth among children who gave coronary events as adults, N. Engl. J. Med. 2005, Vol.353, P.1802-1809.
27. Bunger M.K., Moran S.M., Glover E., et al., Resistance to 2,3,7,8- tetrachlorodibenzo-p-dioxin toxicity and abnormal liver development in mice carrying a mutation in the nuclear localization sequence of the aryl hydrocarbon receptor, J. Biol. Chem., 2003, Vol.278, P.17767-17774.
28. Bateson P., Barker D., Clutton-Brock T., et al., Developmental plasticity and human health, Nature, 2004, Vol.430, P.419-421.
29. Chénais B., Caruso A., Hiard S., Casse N., The impact of transposable elements on eukaryotic genomes: From genome size increase to genetic adaptation to stressful environments, Gene., 2012, Vol.509, P.7-15.
30. Christensen B.C., Houseman E.A., Marsit C.J., et al., Aging and environmental exposures alter tissue-specific DNA methylation dependen upon CpG island context, PLoS Genet., 2009, Vol.5, P.e1000602.
31. Chan T.L., Yuen S.T., Kong C.K., et al., Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer, Nat. Genet., 2006, Vol.38, P.1178-1183.
32. Chong S., Youngson N.A., Whitelaw E., Heritable germline epimutation is not the same as transgenerational epigenetic inheritance, Nat. Genet., 2007, Vol.39, P.574-575.
33. Choudhuri S., Epigenetic regulation of gene and genome expression, In: Choudhuri S., Carlson, DB., editors. Genomics: Fundamentals and Applications. NY: Informa Healthcare, 2009. p.101-128.
34. Costa M., Davidson T.L., Chen H., et al., Nickel carcinogenesis: epigenetics 35. and hypoxia signaling, Mutat. Res., 2005, Vol.592, P.79-88.
Choudhuri S., Cui Y., Klaassen C.D., Molecular targets of epigenetic regulation and effectors of environmental influences, Toxicol. Appl. Pharmacol., 2010, Vol.245, P.378-393.
36. Cropley J.E., Suter C.M., Beckman K.B., Martin D.I., Germ-line epigenetic modification of the murine Avy allele by nutritional supplementation, Proc. Natl. Acad. Sci. U S A, 2006, Vol.103, P.17308-17312.
37. Daxinger L., Whitelaw E., Transgenerational epigenetic inheritance: more questions than answers, Genome Res., 2010, Vol.20, P.1623-1628.
38. Dobrovic A., Kristensen L.S., DNA methylation, epimutations and cancer predisposition, Int. J. Biochem. Cell. Biol., 2009, Vol.41, P.34-39.
39. Dolinoy D.C., Huang D., Jirtle R.L., Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development, Proc. Natl. Acad. Sci. USA, 2007, Vol.104, P.13056-13061.
40. Dolinoy D.C., Jirtle R.L., Environmental Epigenomics in Human Health and Disease, Envir. Mol. Mutag., 2008, Vol.49, P.4-8.
41. Dunn G.A., Bale T.L., Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice, Endocrinology, 2009, Vol.150, P.4999-5009.
42. Feil R., Fraga M.F., Epigenetics and the environment: emerging patterns and implications, Nat. Rev. Genet., 2012, Vol.13, P.97-106.
43. Flanagan J.M., Popendikyte V,, Pozdniakovaite N., Sobolev M. et al., Intra- and interindividual epigenetic variation in human germ cells, Am. J. Hum. Genet., 2006, Vol.79, P.67-84.
44. Flatscher R., Frajman B., Schonswetter P., Paun O., Nvironmental Heterogeneity and Phenotypic Divergence: Can Heritable Epigenetic Variation Aid Speciation?, Genet. Res. Internat., 2012, Vol.2012, 698421. Epub 2012 Mar 4.
45. Fleming J.L., Huang T.H., Toland A.E., The role of parental and grandparental epigenetic alterations in familial cancer risk, Cancer Res., 2008, Vol.68, P.9116-9121.
46. Fraga M.F., Ballestar E., Paz M,F., et al., Epigenetic differences arise during the lifetime of monozygotic twins, Proc. Natl. Acad. Sci. USA, 2005, Vol.102, P.10604-10609.
47. Franklin T.B., Mansuy I.M., Epigenetic inheritance in mammals: Evidence for the impact of adverse environmental effects, Neurobiol. Disease, 2010, Vol.39, P.61-65.
48. Fowler B.A., Whittaker M.H., Lipsky M., Wang G., Chen X.Q., Oxidative stress induced by lead, cadmium and arsenic mixtures: 30-day, 90-day, and 180-day drinking water studies in rats: an overview, Biometals, 2004, Vol.17, P.567-568.
49. Hahn M.A., Wu X., Li A.X., Hahn T., Pfeifer G., Relationship between gene body DNA methylation and intragenic H3K9me3 and H3K36me3 chromatin marks, PLoS One, 2011, Vol.6, P.e18844.
50. Heijmans B.T., Kremer D., Tobi E.W., et al., Heritable rather than age- related environmental and stochastic factors dominate variation in DNA methylation of the human IGF2/H19 locus, Hum. Mol. Genet., 2007, Vol.16, P.547-554.
51. Heijmans B.T., Tobi E.W., Stein A.D. et al., Persistent epigenetic differences, 2008.
52. Associated with prenatal exposure to famine in humans, Proc. Natl. Acad. Sci. USA, Vol.105, P.17046-17049.
53. Henikoff S., Shilatifard A., Histone modification: cause or cog?, Trends Genet., 2011, Vol.27, P.389-396.
54. Hitchins M.P., Wong J.J., Suthers G., et al., Inheritance of a cancer-associated MLH1 germ-line epimutation, N. Engl. J. Med., 2007, Vol.356, P.697-705.
55. Hitchins M.P., Inheritance of epigenetic aberrations (constitutional pimutations) in cancer susceptibility, Adv. Genet., 2010, Vol.70, P.201-243.
56. Herbst A.L., Ulfelder H., Poskanzer D.C., Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women, N. Engl. J. Med., 1971, Vol.284, P.878-881.
57. Huang D., Zhang Y., Qi Y., Chen C., Ji W., Global DNA hypomethylation, rather than reactive oxygen species (ROS), a potential facilitator of cadmium- stimulated K562 cell proliferation, Toxicol. Lett., 2008, Vol.179, P.43-47.
58. Issa J.P., CpG island methylator phenotype in cancer, Nat. Rev. Cancer., 2004, Vol.4, P.988-993.
59. Jablonka E., Raz G., Transgenerational epigenetic inheritance:prevalence, mechanisms and implications for the study of heredity and evolution, Q. Rev. Biol., 2009, Vol.84, P.131-176.
60. Jirtle R.L., Skinner M.K., Environmental epigenomics and disease susceptibility, Nat. Rev. Genet., 2007, Vol.8, P.253-262.
61. Johannes F., Porcher E., Teixeira F.K. et al., Assessing the Impact of Transgenerational Epigenetic Variation on Complex Traits, PLoS Genet., 2009, Vol.5, P.e1000530.
62. Johnson L.J., Tricker P.J., Epigenomic plasticity within populations:its evolutionary significance and potential, Heredity., 2010, Vol.105, P.113-121.
63. Kalisz S., Purugganan M.D., Epialleles via DNA methylation: consequences for plant evolution, Trends in Ecol. Evol., 2004, Vol.19, P.309-314.
64. Kadota M., Yang H.H., Hu N., et al., Allele-specific chromatin immunoprecipitation studiesshow genetic influence on chromatin state in human genome, PLoS Gen., 2007, Vol.3, P.e81.
65. Kangaspeska S., Stride B., Métivier R., et al., Transient cyclical methylation of promoter DNA, Nature, 2008, Vol.452, P.112-115.
66. Ke Q., Davidson T., Chen H., Kluz T., Costa M., Alterations of histone modifications and transgene silencing by nickel chloride, Carcinogenesis, 2006, Vol.27, P.1481-1488.
67. Kondo K., Takahashi Y., Hirose Y., Nagao T., Tsuyuguchi M., Hashimoto M., Ochiai A., Monden Y., Tangoku A., The reduced expression and aberrant methylation of p16(INK4a) in chromate workers with lung cancer, Lung Cancer, 2006, Vol.53, P.295-302.
68. Kouzarides T., Chromatin modifications and their function, Cell., 2007, Vol.128, P.693-705.
69. Kim J., Kim J-Y., Issa J.P, Aging and DNA Methylation, Curr. Chem. Biol., 2009, Vol.3, P.321-329.
70. Kota S., Feil R., Epigenetic transitions in germ cell development and meiosi,
Dev. Cell., 2010, Vol.19, P.675-686.
71. Lane N., Dean W., Erhardt S., Hajkova P., Surani A., Walter J., Reik W., Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse, Genesis, 2003, Vol.35, P.88-93.
72. Law, J.A., Jacobsen S.E., Establishing, maintaining and modifying DNA methylation patterns in plants and animals, Nat. Rev. Genet., 2010, Vol.11, P.204-220.
73. LeBaron M.J., Rasoulpour R.J., Klapacz J., et al., Epigenetics and chemical safety assessment, Mutat. Res. Rev. Mutat. Res., 2010, Vol.705, P.83-95.
74. Lee D.H., Jacobs D.R., Porta M., Hypothesis: a unifying mechanism for nutrition and chemicals as lifelong modulators of DNA hypomethylation, Environ. Health Perspect., 2009, Vol.117, P.1799-1802.
75. Ligtenberg M.J., Kuiper R.P., Chan T.L., et al., Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1, Nat. Genet., 2009, Vol.41, P.112-117.
76. Maunakea A.K., Nagarajan R.P., Bilenky M., et al., Conserved role of intragenic DNA methylation in regulating alternative promoters, Nature, 2010, Vol.466(7303), P.253-257
77. Marsit C.J., Eddy K., Kelsey K.T., MicroRNA responses to cellular stress, Cancer Res., 2006, Vol.66, P.10843-10848.
78. Métivier R., Gallais R., Tiffoche C., et al., Cyclical DNA methylation of a transcriptionally active promoter, Nature, 2008, Vol.452, P.45-50.
79. Millar D., Holliday R., Grigg G., Five not four: History and significance of the fifth base, In: Beck, S.; Olek, A., editors. The Epigenome, Molecular Hide and Seek. Wiley-VCH Verlag GmbH Co. KGaA, 2003, P.3-20
80. Mulero-Navarro S., Carvajal-Gonzalez J.M., Herranz M., et al., The dioxin receptor is silenced by promoter hypermethylation in human acute lymphoblastic leukemia through inhibition of Sp1 binding, Carcinogenesis, 2006, Vol.27, P.1099-1104.
81. Murrell A., Heeson S., Cooper W.N., et al., An association between variantscin the IGF2 gene and Beckwith-Wiedemann syndrome: interaction between genotype and epigenotype, Hum. Mol. Genet., 2004, Vol.13, P.247-255.
82. Nelson K.G., Sakai Y., Eitzman B., Steed T., McLachlan J., Exposure to diethylstilbestrol during a critical developmental period of the mouse reproductive tract leads to persistent induction of two estrogen-regulated genes, Cell Growth Differ, 1994, Vol.5, P.595-606.
83. Nilsson E.E., Anway M.D., Stanfield J., Skinner M.K., Transgenerational epigenetic effects of the endocrine disruptor vinclozolin on pregnancies and female adult onset disease, Reproduction, 2008, Vol.135, P.713-721.
84. Okey A.B., An aryl hydrocarbon receptor odyssey to the shores of toxicology: the Deichmann Lecture, International Congress of Toxicology-XI, Toxicol. Sci., 2007, Vol.98, P.5-38.
85. Onishchenko N., Karpova N., Sabri F., Castren E., Ceccatelli S., Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury, J.Neurochem, 2008, Vol.106, P.1378-1387.
86. Orphanides G., Reinberg D., A unified theory of gene expression, Cell, 2002, Vol.108, P.439-451.
87. Patkin E.L., Epigenetic mechanisms for primary differentiation in mammalian embryos, Itern. Rev. Cytol., 2002, P.81-130.
88. Patkin E., Kustova, A.P. Dyban., Spontaneous sister-chromatids differentiation (SCD) and sister-chromatid exchanges (SCEs) in chromosomes of mouse blastocyst, Cytogen. Cell Genet., 1994, Vol.66, P.31- 32.
89. Patkin E.L., Asymmetry of sister chromatids methylation of preimplantation mouse embryo chromosomes as revealed by nick translation in situ, Cytogenet. Cell Genet., 1997, Vol.77, P.82.-83.
90. Pembrey M.E., Bygren L.O., Kaati G., et al., Sex-specific, male-line transgenerational responses in humans, Eur. J. Hum. Genet., 2006, Vol.14, P.159-166.
91. Peters A., Particulate matter and heart disease: evidence from epidemiological studies, Toxicol. Appl. Pharmacol., 2005, Vol.207, P.477-482.
92. Peaston A.E., Whitelaw E., Epigenetics and phenotypic variation in mammals, Mamm. Genome., 2006, Vol.17, P.365-374.
93. Rakyan V.K., Chong S., Champ M.E., et al., Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission, Proc. Natl. Acad. Sci. USA, 2003, Vol.100, P.2538-2543.
94. Rakyan V.K., Hildmann T., Novik K.L., et al., DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project, PLoS Biol., 2004, Vol.2, P.e405.
95. Rakyan VK., Down T.A., Maslau S., et al., Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains, Genome Res., 2010, Vol.20, P.434-439.
96. Rakyan V.K., Down T.A., Balding D.J., Beck S., Epigenome-wide association studies for common human diseases, Nat. Rev. Genet., 2011, Vol.12, P.529-41.
97. Reik W., Dean W., Walter J., Epigenetic reprogramming in mammalian development, Science, 2001, Vol.293, P.1089-1093.
98. Roth T.L., Lubin F.D., Funk A.J., Sweatt J.D., et al., Lasting epigenetic influence of early-life adversity on the BDNF gene, Biol. Psychiatry, 2009, Vol.65, P.760-769.
99. Richards E.J., Inherited epigenetic variation-revisiting soft inheritance, Nat. Rev. Genet., 2006, Vol.7, P.395-401.
100. Richards E.J., Population epigenetics, Curr. Opin. Genet., 2008, Vol.18, P.221-226.
101. Richards E.J., Natural epigenetic variation in plant species: a view from the field, Curr. Opin. Plant Biol., 2011, Vol.14, P.204-209.
102. Ropero S., Esteller M., Epigenetics and cancer: DNA methylation, In: Esteller M (ed) Epigenetics in biology and medicine. CRC Press, Boca Raton, FL), 2009.
103. Rosenfeld C.S., Animal models to study environmental epigenetics, Biol. Reprod., 2010, Vol.82, P.473-488.
104. Sasaki H., Matsui Y., Epigenetic events in mammalian germ-cell development: reprogramming and beyond, Nat. Rev. Genet., 2008, Vol.9, P.129-140.
105. Schär P., Fritsch O., DNA repair and the control of DNA methylation, Prog Drug Res., 2011, Vol.67, P.51-68.
106. Shenker N., Flanagan J M., Intragenic DNA methylation: implications of this epigenetic mechanism for cancer research. British Journal of Cancer, 2012, Vol.106, P.248-253.
107. Shen L., Ahuja N., Shen Y., et al., DNA methylation and environmental exposures in human hepatocellular carcinoma, J. Natl. Cancer. Inst., 2002, Vol.94, P.755-761.
108. Slotkin R.K., Martienssen R., Transposable elements and the epigenetic regulation of the genome, Nat. Rev. Genet., 2007, Vol.8, P.272-285.
109. Stouder C., Paoloni-Giacobino A., Transgenerational effects of the endocrine disruptor vinclozolin on the methylation pattern of imprinted genes in the mouse sperm, Reproduction, 2010, Vol.139, P.373-379.
110. Suter C.M., Martin D.I., Ward R.L., Germline epimutation of MLH1 in individuals with multiple cancers, Nat. Genet., 2004, Vol.36, P.497-501.
111. Szyf M., The early-life social environment and DNA methylation, Clin. Genet., 2012, Vol.81, P.341-349.
112. Tamashiro K.L., Moran T.H., Perinatal environment and its influences on metabolic programming of offspring, Physiol. Behav., 2010, Vol.100, P.560-566.
113. Tarantini L., Bonzini M., Apostoli P., et al., Effects of particulate matter on genomic DNA methylation content and iNOS promoter methylation, Environ. Health Perspect., 2009, Vol.117, P.217-222.
114. Vandegehuchte M.B., Janssen C.R., Epigenetics and its implications for ecotoxicology, Ecotoxicology, 2011, Vol.20, P.607-624.
115. Wang B., Li Y., Shao C., Tan Y., Cai L., Cadmium and its epigenetic effects, Curr. Med. Chem., 2012, Vol.19, P.2611-2620.
116. Weaver I.C., Cervoni N., Champagne F.A., et al., Epigenetic programming by maternal behavior, Nat. Neurosci., 2004, Vol.7, P.847-854.
117. Waterland R.A., Jirtle R.L., Transposable elements: targets for early nutritional effects on epigenetic gene regulation, Mol. Cell. Biol., 2003, Vol.23, P.5293-5300.
118. Waterland R.A., Dolinoy D.C., Lin J.R., et al., Maternal methyl supplements increase offspring DNA methylation at axin fused, Genesis, 2006, Vol.44, P.401-406.
119. Watson R.E., Goodman J.I., Effects of phenobarbital on DNA methylation in GC-rich regions of hepatic DNA from mice that exhibit different levels of susceptibility to liver tumorigenesis, Toxicol. Sci., 2002, Vol.68, P.51-58.
120. Weaver I.C., Diorio J., Seckl J.R., Szyf M., Meaney M.J., Epigenetic programming by maternal behavior, Ann. NY. Acad. Sci., 2004, Vol.1024, P.182-212.
121. Weaver I.C., Weaver I.C., Champagne F.A., et al., Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life, J. Neurosci., 2005, Vol.25, P.11045-11054.
122. Wu S.D., Zhu J., Li Y.S., et al., Dynamic epigenetic changes involved in testicular toxicity induced by di-2-(ethylhexyl) phthalate in mice, Basic Clin. Pharmacol. Toxicol., 2010, Vol.106, P.118-123.
123. Xie S., Wang Z., Okano M., Nogami M., Li Y., He W.W., Okumura K., Li E., Cloning, expression and chromosome locations of the human DNMT3 gene family, Gene., 1999, Vol.236, P.87-95.
124. Yang A.S., Estecio M.R., Doshi K., Kondo Y., Tajara E.H., Issa J.P., A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements, Nucl. Acids Res., 2004, Vol.32, P.e38.
125. Yauk C., Polyzos A., Rowan-Carroll A., Somers C.M., et al., Germ-line mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location, Proc. Natl. Acad. Sci. USA, 2008, Vol.105, P.605-610.
126. Youngson N., Whitelaw E., Transgenerational epigenetic effects, Annu. Rev. Genom. Hum. Genet., 2008, Vol.9, P.233-257.