XÁC ĐỊNH THÀNH PHẦN NẤM SỢI ẢNH HƯỞNG ĐẾN KHẢ NĂNG BẢO VỆ KIM LOẠI CỦA VẬT LIỆU MỠ THỬ NGHIỆM TẠI HÒA LẠC
Phân viện Công nghệ sinh học, Trung tâm Nhiệt đới Việt - Nga
Số 63 Nguyễn Văn Huyên, Nghĩa Đô, Cầu Giấy, Hà Nội, Việt Nam
Số điện thoại: 0982010336; Email: cuongnc@vrtc.org.vn
Nội dung chính của bài viết
Tóm tắt
DETERMINATION OF FUNGAL COMPOSITION AFFECTING PROTECTIVE ABILITY OF OIL-BASED STEEL COATINGS IN HOALAC AREA
In this study, the consortium of filamentous fungi affecting the metal protection of 04 types of grease (GOI/VN grease, salt-tolerant grease AMC-3/VN, PVK/VN grease, Russian PVK grease) was identified. Six steel-covering grease types exhibiting protection against fungal infections were taken for fungal isolation. Seven strains of filamentous fungi were isolated, characterized by colony morphology, analysis of ITS1-5,8S-ITS2 sequences, and abilities to produce extracellular enzymes (protease, amylase, cellulase, lipase). Besides, the influence of filamentous fungi on metal protection was evaluated by measurement of rust portfolio on metal surface after degreasing by using images ImageJ v.1.51 software. Among isolated strains, 07 isolates of filamentous fungi showing varieties in morphological colonies were selected and taxonomically identified as Penicillium chermesinum, Penicillium cuddlyae with over 98% similarity of ITS1-5,8S-ITS2 sequences compared with related ones deposited on GenBank (NCBI). Of those, 02 strains (M1.1 and M4.1) were capable of producing 4 types of extracellular enzymes. When utilizing Image J software to examine the effects of fungal isolates on the protective capabilities of grease covering materials against metal corrosion, rust spots with variable densities between 1.30%-18.66% appearing on the surface of CT5 steel were found to be formed by fungal attacks. The findings in present study therefore provide a fundamental basis for the effects of fungal growth on grease decomposition at the Hoa Lac Thach That/ Ha Noi testing area and further studies on damages caused by fungi to steel-covering greases as well as corrosion of the metal surface.
Từ khóa
Penicillium, grease, filamentous fungi, biological destruction, ITS sequences, mỡ, nấm sợi, phá hủy sinh học
Chi tiết bài viết
Tài liệu tham khảo
2. Trịnh Xuân Sén, Ăn mòn và bảo vệ kim loại, Nxb. Đại học quốc gia Hà Nội, 2006.
3. Hagarová M., et al., Effect of flue gases’ corrosive components on the degradation process of evaporator tubes, Materials, 2021, 14(14):3860.
4. Sereda V. N., Nguyễn Hồng Dư, Svitich A. A, Phạm Duy Nam, Nguyễn Hồng Phong, Bảo vệ bổ sung khoang thiết bị của máy bay Su-C bằng công nghệ khí khô trong điều kiện nhiệt đới Việt Nam, Tạp chí Khoa học và Công nghệ nhiệt đới, 2018, 17(12):56-62.
5. Nan L., et al., Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli, Materials Science and Engineering: C, 2015, 48:228-234.
6. Lim A. T. O., et al., Self-healing microcapsule-thickened oil barrier coatings, Research, 2019.
7. Horel A. and Schiewer S., Microbial degradation of different hydrocarbon fuels with mycoremediation of volatiles, Microorganisms, 2020, 8(2):163.
8. Ngo C. C., et al., Identification of fungal community associated with deterioration of optical observation instruments of museums in Northern Vietnam, Applied Sciences, 2021, 11(12):5351.
9. Cammarota M. and Freire D., A review on hydrolytic enzymes in the treatment of wastewater with high oil and grease content, Bioresource technology, 2006, 97(17):2195-2210.
10. ССР, Единая система защиты от коррозии и старения. Материалы неметаллические и изделия с их применением. Метод испытаний на микробиологическую стойкость в природных условиях в атмосфере., in ГОСТ 9.053-75*, 1995.
11. Seifert K. A. and Gams W., The genera of hyphomycetes-2011 update, Persoonia: Molecular Phylogeny and Evolution of Fungi, 2011, 27:119.
12. Vedashree S., et al., Screening and assay of extracellular enzymes in Phomopsis azadirachtae causing die-back disease of neem, J Agricultural Technol, 2013, 9(4):915-927.
13. Kaarakainen P., et al., Microbial content of house dust samples determined with qPCR, Science of the Total Environment, 2009, 407(16):4673-4680.
14. Wei G., et al., Endophytes isolated from Panax notoginseng converted ginsenosides, Microbial Biotechnology, 2021.
15. Schoch C. L., et al., Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi, Database, 2014.
16. Rossiana N., et al., Growth profile of Penicillium chermesinum Biourge in function of total petroleum hydrocarbon and polycyclic aromatic hydrocarbons (PAH) compounds in oily sludge, World Scientific News, 2020, 141:103-114.
17. Kumari A., et al., Biodegradation of waste grease by Penicillium chrysogenum for production of fatty acid, Bioresource technology, 2017, 226:31-38.
18. Darsih, C., et al., A new polyketide from the endophytic fungus Penicillium chermesinum, Indonesian Journal of Chemistry, 2017. 17(3):360-364.
19. GOST, Unified system of corrosion and ageing protection. Technical items, Methods of laboratorytests for mould resistance - M: Print-house of standards, 1989.
20. Génin J. M., et al., Products obtained by microbially-induced corrosion of steel in a marine environment: Role of green rust two, Hyperfine Interactions, 1994, 93(1):1807-1812.