XÂY DỰNG MÔ HÌNH TOÁN HỌC TÍNH TOÁN NHIỆT LƯỢNG CHÁY CỦA THUỐC HỎA THUẬT TRÊN CƠ SỞ MAGIE-TEFLON-VITON
Học viện Kỹ thuật Quân sự
Số 236 Hoàng Quốc Việt, Bắc Từ Liêm, Hà Nội, Việt Nam
Số điện thoại: 0974871094; Email: nguyennamson21@lqdtu.edu.vn
Nội dung chính của bài viết
Tóm tắt
ALGORITHM AND COMPUTER CODE FOR CALCULATING THE HEAT OF COMBUSTION OF THE PYROTECHNIC BASED ON MAGIE-TEFLON-VITON
The heat of combustion is one of the important energy characteristics of pyrotechnic in general and Magnesium-Teflon-Viton (MTV) based pyrotechnic. The computational and experimental method to determine the combustion heat of MTV pyrotechnic are presented in this paper. The scientific establishment for calculating the heat of combustion is based on the determination of chemical equilibrium according to the principle of minimizing Helmholtz energy. Theoretical calculation results and experimental data are compared with each other to confirm the reliability of the mathematical model. The research results show that the pyrotechnic base on MTV is a mixture with a high combustion heat. The heat of combustion is highest when the mass ratio of Mg/Teflon is about 35/60 and decreases with increasing (or decreasing) the Mg content.
Từ khóa
Combustion heat, pyrotechnic, chemical equilibrium, MTV, nhiệt lượng cháy, thuốc hỏa thuật, cân bằng hóa học
Chi tiết bài viết
Tài liệu tham khảo
2. Koch E. C., Metal-fluorocarbon based energetic materials, John Wiley & Sons, 2012, p. 15-17.
3. Yong L. V. D. and K. J. Smit, A theoretical study of the combustion of Magnesium/Teflon/Viton pyrotechnic compositions, Materials Research Laboratory, 1991, p. 9-15, 24.
4. Peretz A., Investigation of pyrotechnic MTV compositions for rocket motor igniters, Journal of Spacecraft and Rockets, 1984, 21(2):222-224.
5. Bose A. K., Military pyrotechnics: Principles and practices: CRC Press, 2022, p. 371-372.
6. Conkling J. A. and C. J. Mocella, Chemistry of pyrotechnics: basic principles and theory, CRC Press, 2019, p. 1-3, 198-201.
7. Christo F. C., Thermochemistry and kinetics models for Magnesium/ Teflon/ Viton pyrotechnic compositions, DSTO Aeronautical and Maritime Research Laboratory, 1999, p. 3-5.
8. Gordon S. and B. J. McBride, Computer program for calculation of complex chemical equilibrium, NASA reference publication, 1994, 1311:4-5, 19-20.
9. Sirri F. H., Investigation for study of complex chemical equilibrium of combustion products gas mixture, 2004, p. 3, 16-17, 22-29, 33-34.
10. Chase Jr. M., JANAF thermochemical tables, Journal of Physical Chemistry Reference Data, 1985, 14(1).
11. McBride B. J., M. J. Zehe, and S. Gordon, NASA Glenn coefficients for calculating thermodynamic properties of individual species, National Aeronautics and Space Administration, Glenn Research Center, 2002.
12. McBride B. J., S. Gordon, and M. A. Reno, Thermodynamic data of fifty reference elements, NASA TP-3287, 1993.
13. McBride B. J., S. Gordon, and M. A Reno, Coefficients for calculating thermodynamic and transport properties of individual species, NASA TM-4513, 1993.
14. Belov G. V., Thermodynamicmodeling-Methods, algorithms, programs, Моscow: Scientific World, 2002.
15. Calorimeter I., www.parrinst.com/products/oxygen-bombcalorimeters/6200-isoperibol-calorimeter.
16. L. N. Sviridov, A. A. Osyka, and D. V. Korolev, Calculation of formula of pyrotechnical compositions, St. Petersburg State Institute of Technology, 2007, p. 4-6.