NGHIÊN CỨU CHẾ TẠO VẬT LIỆU GRAPHEN TỪ GRAPHIT BẰNG THIẾT BỊ RUNG SIÊU ÂM MẬT ĐỘ CÔNG SUẤT LỚN

Nguyễn Hải Yến1, Mai Thị Phượng1, Trần Văn Hậu1, Nguyễn Cao Khang2, Nguyễn Việt Dũng1, Nguyễn Thị Ngọc Tú1, Âu Thị Hằng3, Tô Anh Đức2, Phạm Văn Trình1, Đoàn Đinh Phương1, Phan Ngọc Minh2, Vũ Thị Thu Hà3, Bùi Hùng Thắng1,
1 Viện Khoa học vật liệu, Viện Hàn lâm Khoa học và Công nghệ Việt Nam
2 Học viện Khoa học và Công nghệ, Viện Hàn lâm Khoa học và Công nghệ Việt Nam
3 Phòng Thí nghiệm Trọng điểm Công nghệ Lọc, Hóa dầu
Tác giả liên hệ:
Bùi Hùng Thắng
Viện Khoa học vật liệu, Viện Hàn lâm Khoa học và Công nghệ Việt Nam
Số 18 Hoàng Quốc Việt, Nghĩa Đô, Cầu Giấy, Hà Nội
Số điện thoại: 0985175655;  Email: thangbh@ims.vast.ac.vn

Nội dung chính của bài viết

Tóm tắt

PREPARATION OF GRAPHENE FROM GRAPHITE BY HIGH-POWERED DENSITY ULTRASONIC VIBRATION DEVICE

This paper presents an environmentally friendly and efficient method to prepare graphene from graphite, in there a high-powered ultrasonic vibration device is used to separate graphite into graphene in a liquid. During exfoliation, ultrasonic waves provide mechanical energy to break Vander Walls bonds in order to split graphite layers into graphene. Graphene was prepared by the exfoliation of graphite layers in distilled water with Tween 80 surfactant and then the solvent was vibrated at high power for 1 to 5 hours. The obtained results show that high-frequency ultrasound is a powerful tool to break Vander Waals bonding forces between adjacent layers in graphite. The SEM and ZetaSizer distribution results show that with the average size of 931 nm, 419 nm, 411 nm, 408 nm, 317 nm, the ultrasound time is 1 hour, 2 hours, 3 hours, 4 hours, and 5 hours, respectively. The TEM and Raman results show that the graphene material has a thickness of about 3 nm corresponding to the number of layers less than 10 as low-layer graphene. These results show that high-frequency ultrasonic waves not only reduce the average size, but also separate graphite layers, forming graphene.

Chi tiết bài viết

Tài liệu tham khảo

1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., Electric field effect in atomically thin carbon films, Science, 2004, 306(5696):666-9.
2. Eletskii, V. Aleksandr, et al., Graphen: fabrication methods and thermophysical properties, Physics-Uspekhi, 2011, 54(3):227.
3. Bhuyan, Md. Sajibul Alam, et al., Synthesis of graphen, International Nano Letters, 2016, 6(2):65-83.
4. A. Adetayo, D. Runsewe., Synthesis and fabrication of graphen and graphen oxide: A review, Open Journal of Composite Materials, 2019, 9(2): 207.
5. Pavlova, S. Alexandra, et al., Liquid-phase exfoliation of flaky graphite, Journal of Nanophotonics, 2016, 10(1):012525.
6. Lotya, Mustafa, et al., Liquid phase production of graphen by exfoliation of graphite in surfactant/water solutions, Journal of the American Chemical Society, 2009, 131(10):3611-3620.
7. Hernandez, Yenny, et al., High-yield production of graphen by liquid-phase exfoliation of graphite, Nature nanotechnology, 2008, 3(9):563-568.
8. M. Choucair, P. Thordarson, J. A. Stride, Gram-scale production of graphen based on solvothermal synthesis and sonication, Nature Nanotechnology, 2009, 4(1):30-3.
9. X. Xin, G. Y. Xu, T. T. Zhao, Y. Y. Zhu, X. F. Shi, H. J. Gong et al., Dispersing carbon nanotubes in aqueous solutions by a star like block copolymer, The Journal of Physical Chemistry C, 2008, 112(42):16377-84
9. H. P. Zhao, X. Q. Feng, H. Gao, Ultrasonic technique for extracting nanofibers from nature materials, Applied Physics Letters, 2007, 90(7):073112-2
10. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Letters, 2009, 9:30-35.
11. V. T. Nguyen, H. D. Le, V. C. Nguyen, T. T. T. Ngo, D. Q. Le, X. N. Nguyen and N. M. Phan, Synthesis of multi-layer graphene films on copper tape by atmospheric pressure chemical vapor deposition method, Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, 4(3):035012.
12. Hwangbo Y., Lee C. K., Mag-Isa A., Jang J. W., Lee H. J., Lee S. B., Kim S. S., Kim J. H., Interlayer non-coupled optical properties for determining the number of layers in arbitrarily stacked multilayer graphenes, Carbon, 2014, 77:454-461.
13. Vineet Kumar, Anuj Kumar, Dong-Joo Lee and Sang-Shin Park, Estimation of number of graphene layers using different methods: A focused review, Materials, 2021, 14:4590.
14. Graphene number of layers calculator from ID/IG and I2D/IG ratio via Raman spectroscopy, InstaNANO, https://instanano.com/characterization/calculator/ raman/ graphene-layers/ (accessed September 6th, 2022).