CHẾ TẠO MÀNG MỎNG CÓ TÍNH KỊ NƯỚC VÀ SIÊU KỊ NƯỚC DỰA TRÊN VẬT LIỆU OCTADECYLAMIN BẰNG CÁC PHƯƠNG PHÁP HÓA - LÝ KHÁC NHAU

Vũ Thị Thao1, , Nguyễn Xuân Tùng1, Phạm Minh Trí1, Nguyễn Ngọc An1, Hoàng Mai Hà2, Lê Tuấn Anh3
1 Trường Đại học Công nghệ, Đại học Quốc gia Hà Nội
2 Viện Hóa học, Viện Hàn lâm Khoa học và Công nghệ Việt Nam
3 Trường Đại học Khoa học tự nhiên, Đại học Quốc gia Hà Nội
Tác giả liên hệ:
Vũ Thị Thao
Trường Đại học Công nghệ, Đại học Quốc gia Hà Nội
Khoa Vật lý Kỹ thuật và Công nghệ nano, Trường Đại học Công nghệ, Đại học Quốc gia Hà Nội. E4, 144 Xuân Thủy, Cầu Giấy, Hà Nội
Số điện thoại: 0866182682;  Email: vtthao@vnu.edu.vn

Nội dung chính của bài viết

Tóm tắt

FABRICATION OF OCTADECYLAMINE THIN FILMS BY DIFFERENT PHYSICAL-CHEMICAL METHODS

Thin films based on octadecylamine (ODA) material have been successfully fabricated by different methods: Langmuir-Blodgett (LB) method, spin-coating, spray-coating and dip-coating methods. The films obtained on the glass substrate were investigated for their optical properties (Uv-vis), film morphology (digital microscope, SEM) and contact angle. The solution and thin film absorption spectra of ODA and the mixtures of ODA and polymer RTV/SR do not absorb in the wavelength of the visible light region. The SEM analysis results show that the film morphology of ODA strongly depends on the nature of the ODA solution and the method of film formation and these are important factors affecting the different hydrophobicity of ODA films. Comparison of the droplet contact angle of thin films obtained by the above methods shows that the films fabricated by LB, spin-coating and spray-coating all increase the hydrophobicity of the glass substrate with the droplet contact angle range from 100o-145o, while dip-coating it is possible to fabricate superhydrophobic films with contact angles up to 161o.

Chi tiết bài viết

Tài liệu tham khảo

1. Reddy Y. Y., A glimpse of Vietnam’s forest wealth and medicinal plants-based traditional medicine, Journal of Human Ecology, 2005, p. 293-299.
2. Wu X. H., et al., Potential of superhydrophobic surface for blood-contacting medical devices, International journal of molecular sciences, 2021, 22(7):3341.
3. Sun Ziqi, et al., Fly‐eye inspired superhydrophobic anti‐fogging inorganic nanostructures, Small, 2014, 10(15):3001-3006.
4. Guo Z. and Fuchao Y., Surfaces and Interfaces of Biomimetic Superhydrophobic Materials, John Wiley & Sons, 2017.
5. Lee Y.-L. J. L., Surface characterization of octadecylamine films prepared by langmuir-blodgett and vacuum deposition methods by dynamic contact angle measurements, ACS Publications, 1999, 15(5):1796-1801.
6. Xu, Y.-F., et al., Bisurfactant-controlled synthesis of three-dimensional YBO3/Eu3+ architectures with tunable wettability, ACS Publications, 2009, 25(12):7103-7108.
7. Zainal Abidin, A.S., et al., Surface functionalization of graphene oxide with octadecylamine for improved thermal and mechanical properties in polybutylene succinate nanocomposite, Polymer Bulletin, 2018, 75(8):3499-3522.
8. Paseta L., et al., Functionalized graphene-based polyamide thin film nanocomposite membranes for organic solvent nanofiltration, Separation and Purification Technology, 2020, 247:116995.
9. Xue Chao-Hua, Xue Bai, and Shun-Tian Jia, Robust, self-healing superhydrophobic fabrics prepared by one-step coating of PDMS and octadecylamine, Scientific Reports, 2016, 6(1):1-11.
10. Wan K., J. Chovelon, and N.J.T. Jaffrezic-Renault, Enzyme-octadecylamine Langmuir-Blodgett membranes for ENFET biosensors, Talanta, 2000, 52(4):663-670.
11. Kondalkar V. V., et al., Langmuir-Blodgett self organized nanocrystalline tungsten oxide thin films for electrochromic performance, RSC Advances, 2015, 5(34):26923-26931.
12. Bettini S., et al., Promising piezoelectric properties of new ZnO@ octadecylamine adduct, The Journal of Physical Chemistry, 2015, 119(34):20143-20149.
13. Mayya K. M., et al., Time-dependent complexation of glucose-reduced gold nanoparticles with octadecylamine Langmuir monolayers, Journal of colloid and interface science, 2004, 270(1):133-139.
14. Durán-Acevedo C. M., et al., Exhaled breath analysis for gastric cancer diagnosis in Colombian patients, Oncotarget, 2018, 9(48):28805.
15. Abu Tahari M. N., Lahuri A. H., Ghazali Z., Samidin S., Sulhadi S. S., Dzakaria N., et al., Application of octadecylamine-based adsorbent on carbon dioxide capture, MSF, 2020, 1010:367-72.
16. Achagri G., et al., Surface modification of highly hydrophobic polyester fabric coated with octadecylamine-functionalized graphene nanosheets, RSC Advances, 2020, 10(42):24941-24950.
17. Yao H., et al., Electrically conductive superhydrophobic octadecylamine-functionalized multiwall carbon nanotube films, Carbon, 2013, 53:366-373.
18. Benítez, J., et al., Structure and chemical state of octadecylamine self-assembled monolayers on mica, ACS Publications, 2011, 115(40):19716-19723.
19. Chen, Y., et al., The fabrication of flower-like graphene/octadecylamine composites, Chinese Chemical, 2015, 26(9):1144-1146.
20. G. Momen, M. Farzaneh, Simple process to fabricate a superhydrophobic coating, Micro & Nano Letters, 2011, 6(6):405-407.