NGHIÊN CỨU CHẾ TẠO VÀ KHẢO SÁT KHẢ NĂNG CHUYỂN ĐỔI KHÍ CO Ở NHIỆT ĐỘ PHÒNG CỦA VẬT LIỆU TỔ HỢP Pd/Al2O3/rGO
Viện Khoa học vật liệu, Viện Hàn lâm Khoa học và Công nghệ Việt Nam
18 Hoàng Quốc Việt, Cầu Giấy, Hà Nội
Số điện thoại: 0367129828; Email: tunv@ims.vast.ac.vn
Nội dung chính của bài viết
Tóm tắt
PREPARATION AND CHARACTERIZATION OF Pd/Al2O3/rGO NANOCOMPOSITE FOR ROOM - TEMPERATURE CARBON MONOXIDE OXIDATION
In this work, we present a report on preparing Pd/Al2O3/rGO nanocomposite by utilizing the co-precipitation method. SEM images show that highly dense Pd/Al2O3 nanoparticles are decorated on the graphene surface. The nanocomposite has a high surface area of 184.6 m²/g is confirmed by BET measurement. The crystal structure of the nanocomposite is also done by X-ray measurement. The catalystic performance of the nanocomposite for room - temperature CO oxidation is tested. The measured results demonstrated that the performance of room-temperature CO oxidation could be retained with low Pd content (2% w/w) by using rGO nanosheets as catalyst support.
Từ khóa
Room-temperature CO oxidation, nanoparticles, Pd/Al2O3, reduced graphene oxide (rGO).
Chi tiết bài viết
Tài liệu tham khảo
2. B. Z. S. Qureshi, E. A. Jaseer, Silica-supported gold nanocatalyst for CO oxidation, Publ., Febr. 13th. 2019.
3. A. N. Grace and K. Pandian, One pot synthesis of polymer protected Pt, Pd, Ag and Ru nanoparticles and nanoprisms under reflux and microwave mode of heating in glycerol-A comparative study, Mater. Chem. Physs, 2007, 104:191-198.
4. P. S. Roy, J. Bagchi and S. K. Bhattacharya, Size-controlled synthesis and characterization of polyvinyl alcohol coated palladium nanoparticles, Transit. Met Chem., 2009, 34:447-453.
5. Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto and N. Hanada, Self-regeneration of a Pd-perovskite catalyst for automotive emissions control, Nature, 2002, 418:164-167.
6. N. S. Babu, N. Lingaiah, N. Pasha, J. V. Kumar, P. S. Sai Prasad, Influence of particle size and nature of Pd species on the hydrodechlorination of chloroaromatics: Studies on Pd/TiO2 catalysts in chlorobenzene conversion, Catal. Today, 2009, 141:120-124.
7. S. Ivanova and M. M. Tejada, Special issue catalysis by precious metals, past and future, Catalysts, 2020.
8. H. Li, Meiqing S. M. Shen, J. Wang, H. Wang, and J. Wang, Effect of support on CO oxidation performance over the Pd/CeO2 and Pd/CeO2-ZrO2 catalyst, Ind. Eng. Chem. Res., 2020, 59(4):1477-1486.
9. A. S. Ivanova, E. M. Slavinskaya, O. A. Stonkus, R. V. Gulyaev, T. S. Glazneva, A. S. Noskov and A. I. Boronin, Highly active and durable Pd/Fe2O3 catalysts for wet CO oxidation under ambient conditions, Catal. Sci. Technol., 2016, 6:3918-3928.
10. S. Abbet, U. Heiz, H. Häkkinen, and U. Landman, CO oxidation on a single Pd atom supported on magnesia, Phys. Rev. Lett., 2001, 86:5950-5953.
11. K. Föttinger, W. Emhofer, D. Lennon, G. Rupprechter, Adsorption and reaction of CO on (Pd-)Al2O3 and (Pd-)ZrO2, vibrational spectroscopy of carbonate formation, Top Catal, 2017, 60:1722-1734.
12. K. Zorn, S. Giorgio, E. Halwax, C. R. Henry, H. Grönbeck, and G. Rupprechter, CO oxidation on technological Pd-Al2O3 catalysts: Oxidation state and activity, J. Phys. Chem. C., 2011, 115(4):1103-1111.
13. K. Murata, E. Eleeda, J. Ohyama, Y. Yamamoto, S. Araid and A. Satsuma, Identification of active sites in CO oxidation over a Pd/Al2O3 catalyst, Phys. Chem., 2019, 21:18128-18137.
13. A. Mvenezia, L. Fliotta, G. Pantaleo, VLa Parola, G. Deganello, Abeck, Zs. Koppány, K. Frey, D. Horváth, L. Guczic, Activity of SiO2 supported gold-palladium catalysts in CO oxidation, Applied Catalysis A: General, 2003, 251(2):359-368.