CHẾ TẠO VÀ KHẢO SÁT SỰ ẢNH HƯỞNG CỦA HÀM LƯỢNG PALADI TRONG VẬT LIỆU TỔ HỢP Pd/γ-Al2O3 ĐẾN KHẢ NĂNG CHUYỂN HÓA KHÍ CO Ở NHIỆT ĐỘ PHÒNG

Hà Ngọc Thiện1, , Vũ Trần Dương1, Nguyễn Hùng Thái1, Nguyễn Hữu Đông1, Vương Văn Trường1, Nguyễn Thị Quỳnh Nga1
1 Viện Độ bền Nhiệt đới, Trung tâm Nhiệt đới Việt - Nga
Tác giả liên hệ:
Hà Ngọc Thiện
Viện Độ bền Nhiệt đới, Trung tâm Nhiệt đới Việt - Nga
Số 63 Nguyễn Văn Huyên, Nghĩa Đô, Cầu Giấy, Hà Nội
Số điện thoại: 096233335;  Email: hnthien.ttndvn@gmail.com

Nội dung chính của bài viết

Tóm tắt

PREPARATION OF GAMMA-ALUMINA/PALLADIUM COMPOSITE AND CONSIDERING THE INFLUENCE OF PALLADIUM CONTENT ON THE OXIDATION OF CARBON MONOXIDE AT ROOM TEMPERATURE

This study presents the results of fabrication Pd/γ-Al2O3 by the chemical co-precipitation method. The results showed that the CO conversion speed and efficiency of Pd/γ-Al2O3 (3%Pd) were many times higher than Pd/γ-Al2O3 (2,5%PD) and Pd/γ-Al2O3 (2%Pd). For the first 1500 seconds compared to ФК-П catalyst, the CO conversion speed of Pd/γ-Al2O3 (3%Pd) was 8% higher. To consider the microstructure, FE-SEM and XRD measurements were also carried out.

Chi tiết bài viết

Tài liệu tham khảo

1. Y. Niu, L. K. Yeung, R. M. Crooks, Size-Selective hydrogenation of olefins by dendrimer-encapsulated palladium nanoparticles, Journal of the American Chemical Society, 2001, 123:6840-6846.
2. C. C. Luo, Y. H. Zhang, Y. G. Wang, Palladium nanoparticles in poly(ethyleneglycol): the efficient and recyclable catalyst for Heck reaction, Journal of Molecular Catalysis A: Chemical, 2005, 229:7-12.
3. G. B. Hoflund, H. A. E. Hagelin, J. F. Weaver, G. N. Salaita, ELS and XPS study of Pd/PdO methane oxidation catalysts, Applied Surface Science, 2003, 205:102-112.
4. J. Ma, Y. Ji, H. Sun, Y. Chen, Y. Tang, T. Lu, J. Zheng, Synthesis of carbon supported palladium nanoparticles catalyst using a facile homogeneous precipitation-reduction reaction method for formic acid electrooxidation, Applied Surface Science, 2011, 257:10483-10488.
5. Z. P. Sun, X. G. Zhang, H. Tong, R. L. Xue, Y. Y. Liang, H. L. Li, Poly(sodium-p-styrenesulfonate) assisted microwave synthesis of ordered mesoporous carbon supported Pd nanoparticles for formic acid electro-oxidation, Applied Surface Science, 2009, 256:33-38.
6. F. J. Urbano, J. M. Marinas, Hydrogenolysis of organohalogen compounds over palladium supported catalysts, Journal of Molecular Catalysis A: Chemical, 2001, 173:329-345.
7. D. Fritsch, K. Kuhr, K. Mackenzie, F. D. Kopinke, Hydrodechlorination of chloroorganic compounds in ground water by palladium catalysts: Part 1. Development of polymer-based catalysts and membrane reactor tests, Catalysis Today, 2003, 82:105-118.
8. H. H. Miao, J. S. Ye, S. L. Y. Wong, B. X. Wang, X. Y. Li, F. S. Sheu, Oxidative modification of neurogranin by nitric oxide: an amperometric study, Bioelectrochemistry, 2000, 51:163-173.
9. P. Singh, M. V. Kulkarni, S. P. Gokhale, S. H. Chikkali, C. V. Kulkarni, Enhancing the hydrogen storage capacity of Pd-functionalized multi-walled carbon nanotubes, Applied Surface Science, 2012, 258:3405-3409.
10. J. Gislason, W. Xia, H. Sellers, Selective hydrogenation of acetylene in an ethylene rich flow:  Results of kinetic simulations, Journal of Physical Chemistry A, 2002, 106:767-774.
11. K. Thirunavukkarasu, K. Thirumoorthy, J. Libuda, C. S. Gopinath, A molecular beam study of the NO + CO reaction on Pd(111) surfaces, Journal of Physical Chemistry B, 2005, 109:13272-13282.
12. S. Nath, S. Praharaj, S. Panigrahi, S. Basu, T. Pal, Photochemical evolution of palladium nanoparticles in Triton X-100 and its application as catalyst for degradation of acridine orange, Current Science, 2007, 92:786-790.
13. M. Faticanti, N. Cioffi, S. De Rossi, N. Ditaranto, P. Porta, L. Sabbatini, T. BleveZacheo, Pd supported on tetragonal zirconia: Electrosynthesis, characterization and catalytic activity toward CO oxidation and CH4 combustion, Applied Catalysis B: Environmental, 2005, 60:73-82.
14. Y. Wu, L. Zhanga, G. Lia, C. Lianga, X. Huanga, Y. Zhanga, G. Songb, J. Jia, C. Zhixiang, Synthesis and characterization of nanocomposites with palladium embedded in mesoporous silica, Materials Research Bulletin, 2001, 36:253-263.
15. G. Cristoforetti, E. Pitzalis, R. Spiniello, R. Ishakc, F. Giammancod, M. MunizMirandae, S. Caporalie, Physico-chemical properties of Pd nanoparticles produced by Pulsed Laser Ablation in different organic solvents, Applied Surface Science, 2012, 258:3289-3297.
16. J. Fu, M. Wang, S. Wang, X. Wang, H. Wang, L. Hu, Q. Xu, Supercritical carbon dioxide-assisted preparation of palladium nanoparticles on cyclotriphosphazene-containing polymer nanospheres, Applied Surface Science, 2011, 257:7129-7133.
17. P. Korovchenko, A. Renken, L. Kiwi-Minsker, Microwave plasma assisted preparation of Pd-nanoparticles with controlled dispersion on woven activated carbon fibres, Catalysis Today, 2005, 102-103:133-141.
18. K. Leopold, M. Maier, M. Schuster, Preparation and characterization of Pd/Al2O3 and Pd nanoparticles as standardized test material for chemical and biochemical studies of traffic related emissions, Science of the Total Environment, 2008, 394:177-182.