XÁC ĐỊNH GIỚI HẠN VÀ ĐÁNH GIÁ HIỆU QUẢ XỬ LÝ NƯỚC MẶT CỦA VIÊN XỬ LÝ NƯỚC DG19 TRONG ĐIỀU KIỆN DÃ NGOẠI

Võ Thị Hoài Thu1, , Hoàng Quang Cường1, Đinh Thị Thu Trang1, Lê Thị Huệ1, Nguyễn Công Tỉnh1
1 Phân viện Công nghệ sinh học, Trung tâm Nhiệt đới Việt - Nga
Tác giả liên hệ:
Võ Thị Hoài Thu
Phân viện Công nghệ sinh học, Trung tâm Nhiệt đới Việt - Nga
Số 63 Nguyễn Văn Huyên, Nghĩa Đô, Cầu Giấy, Hà Nội
Số điện thoại: 0983908181;  Email: thuvo3081@gmail.com

Nội dung chính của bài viết

Tóm tắt

LIMITS DETERMINATION AND EFFECTIVE ASSESSMENT OF DG19 WATER TREATMENT TABLETS IN OUTDOOR CONDITIONS

In this paper, DG19 Water Treatmnent Tablets were researched and developed by the Department of Biotechnology, Joint Vietnam-Russia Tropical Science and Technology Research Centre to determine the processing threshold and effective assessment when treating water. The results showed that in the treated water sample, the initial microorganisms (E. coli < 107 CFU/mL, Total Coliform < 108 CFU/mL, Streptococci faecal < 108 CFU/mL, Pseudomonas aeruginosa < 108 CFU/mL, Spores of sulfite-reducing anaerobic bacteria < 106 CFU/mL) were not detected; heavy metals with initial concentration (Zn2+ ≤ 8 mg/L) after treatment, the obtained value less than 2 times or not detected; Permethrin insecticide from an initial concentration of ≤ 80 µg/L, after treatment with a concentration of < 15,6 µg/L or undetectable, meets the standards of QCVN 01-1:2018/BYT.

These natural water sources (rivers, streams, lakes, fields) in two localities Bao Thang, Lao Cai province, and in Quang Dien district, Thua Thien Hue province, when using DG19 tablets in water treatment, the indicators as (microorganisms, turbidity, color, odor, arsenic) were lower when compared with QCVN 6-1:2010/BYT and QCVN 01-1:2018/BYT, the water after treatment was standards for use as drinking water.

Chi tiết bài viết

Tài liệu tham khảo

1. Heller L., Colosimo E. A. and Figueiredo Antunes C. M., Environmental sanitation conditions and health impact: A case-control study, Revista da Sociedade Brasileira de Medicina Tropical, 2003, 36(1):41-50.
2. Oguma K., Matsubara K., Kitajima M., Katayama H. and Takizawa S., Microbial pollution in urban river and assessment of intake path of pathogenic microorganism, in the south part of Vietnam, Modern Media, 2007, 53(5):127-133.
3. NCDC, Climate Information Project (CIP), US Department of Commerce National Climatic Data Centre, 1999. http://lwf.ncdc.noaa.gov/oa/climate/ extremes/1999/november1199.html.
4. Báo cáo đề tài cấp cơ sở của Trung tâm Nhiệt đới Việt - Nga, Nghiên cứu chế tạo viên xử lý nước dùng trong tình huống khẩn cấp, 2019.
5. Molla N. A., Hossain A., Edmondson P., Shipin O., Pilot study on the effect of an intervention using Sodium dichloroisocyanurate tablets (Aquatabs) for drinking water treatment in Dhaka, Bangladesh, Am. J. Trop. Med. Hyg, 2007, 76(1):187-192.
6. QCVN 6-1:2010/BYT, Nước khoáng thiên nhiên, nước đóng chai.
7. QCVN 01-1:2018/BYT, Chất lượng nước sạch sinh hoạt.
8. TCVN 6663-6:2018 (ISO 5667-6:2014), Chất lượng nước - Lấy mẫu, Phần 6: Hướng dẫn lấy mẫu nước sông và suối, Phần 4: Hướng dẫn lấy mẫu từ hồ ao tự nhiên và nhân tạo.
9. Lamensdorf, Marc Holub, William, Water treatment tablet producing potable water PCT/US96/04984 WO 96/32194, 1996.
10. Bloomfield S. F., Uso E. E., The antibacterial properties of sodium hypochlorite and sodium dichloroisocyanurate as hospital disinfectants, J Hosp Infect, 1985, 6:20-30.
11. Heling I., Rotstein I., Dinur T., Szwec-Levine Y., Steinberg D., Bactericidal and Cytotoxic Effects of Sodium Hypochlorite and Sodium Dichloroisocyanurate Solutions In Vitro, Journal of Endodontics, 2001, 27(4):278-280.
12. Kiomars Sharafi, Mehdi Fazlzadeh, Meghdad Pirsaheb, Masoud Moradi, Ali Azari, Hooshmand Sharafi, Kavoos Dindarloo, Hamid Reza Ghafari, Wastewater disinfection using sodium dichloroisocyanate (NaDCC) and sodium hypochlorite (NaOCL): Modeling, optimization and comparative analysis, Desalination and Water Treatment, 2017, 66:221-228
13. Bahaz H., Hadj Seyd A., Moulai K., Aggoun M. S., Removal of heavy metals from an industrial effluent by synthesized zeolite: Case of Bounoura industrial zone, Lebanese Science Journal, 2020, 21(1):80-94.
14. Mehdi Irannajad, Hossein Kamran Haghighi, Removal of Heavy Metals from Polluted Solutions by Zeolitic Adsorbents: Review, Environmental Processes, 2021, 8(1):1-29.
15. Hoang Thi M., Watanabe T., Fukushi K., Ono A., Nakajima F. and Yamamoto K., Quantitative risk assessment of infectious diseases caused by waterborne Escherichia coli during floods in cities of developing countries, Journal of Japan Society on Water Environment, 2011, 34(10):153-159.