NGHIÊN CỨU CỐ ĐỊNH VI SINH VẬT BẰNG CANXI ALGINAT ỨNG DỤNG TRONG CẢM BIẾN SINH HỌC XÁC ĐỊNH NHANH NHU CẦU OXY SINH HÓA

Lê Thị Bảo Ngọc1, Huỳnh Thị Kim Trang1, Dương Huỳnh Thanh Linh1, Nguyễn Thị Thùy Vân1, Hoàng Tiến Cường1, Nguyễn Phúc Hoàng Duy1, Phạm Thị Thùy Phương1,2,
1 Viện Công nghệ Hóa học, Viện Hàn lâm KH&CN Việt Nam
2 Học viện Khoa học và Công nghệ, Viện Hàn lâm KH&CN Việt Nam
Tác giả liên hệ:
Phạm Thị Thùy Phương
Viện Công nghệ Hóa học, Viện Hàn lâm KH&CN Việt Nam, Học viện Khoa học và Công nghệ, Viện Hàn lâm KH&CN Việt Nam
Số 1A Thạnh Lộc 29, phường Thạnh Lộc, Quận 12, Tp. Hồ Chí Minh
Số điện thoại: 0909617896;  Email: pttphuong@ict.vast.vn

Nội dung chính của bài viết

Tóm tắt

IMMOBILIZATION OF MICROORGANISMS USING CANXI ALGINAT FOR RAPID ESTIMATION OF BIO-CHEMICAL OXIDATION DEMAND BY BIOSENSOR

Immobilized microorganisms have been shown to have outstanding advantages over the free ones, especially in the field of wastewater treatment. Natural gel materials such as alginat allow substrates to diffuse well across the membrane, thereby improving the efficiency of immobilized microbial activity. These supports, however, appeared to be swollen or even soluble during treatment. In this study, the factors affecting the stability of canxi alginat beads and the activity of immobilized microorganisms in the BOD biosensor were investigated. By changing the needle size and distance, the particle size of alginat beads can be adjusted. The results show that the smaller the particle size, the higher metabolic activity of immobilized microorganisms; however, very small alginat beads whose diameter is less than 2.3 mm are not stable. Immersion in CaCl2 solution of 0.4% can maintain the stable activity of immobilized microorganisms in alginat beads up to more than 66 days. By using the prepared alginat d beads and GGA standard solutions, the developed biosensor can accurately predict the BOD5 value of wastewater from paper mills.

Chi tiết bài viết

Tài liệu tham khảo

1. Bouabidi Z. B., El-Naas M. H. and Zhang Z., Immobilization of microbial cells for the biotreatment of wastewater: A review, Environmental Chemistry Letters, 2019, 17:241-257
2. Lee K. Y. and Heo T. R., Survival of Bifidobacterium longum immobilized in canxi alginat beads in simulated gastric juices and bile salt solution, Applied environmental microbiology, 2000, 66:869-873
3. Chen C. Y., Kao C. M. and Chen S. C., Application of Klebsiella oxytoca immobilized cells on the treatment of cyanide wastewater, Chemosphere, 2008, 71:133-139
4. Pham T. T. P., Nguyen P. H. D., Nguyen T. T. V. and Duong H. T. L., Self-build packed-bed bioreactor for rapid and effective BOD estimation, Environmental Science Pollution Research, 2019, 26:25656-25667
5. Ngoc L. T. B., Tu T. A., Hien L. T. T., Linh D. N., Tri N., Duy N. P. H., Cuong H. T. and Phuong P. T. T., Simple approach for the rapid estimation of BOD5 in food processing wastewater, Environmental Science Pollution Research, 2020, 27:20554-20564
6. Dzionek A., Wojcieszyńska D. and Guzik U., Natural carriers in bioremediation: A review, Electronic Journal of Biotechnology, 2016, 23:28-36
7. Leenen E. J., Dos Santos V. A., Grolle K. C., Tramper J. and Wijffels R., Characteristics of and selection criteria for support materials for cell immobilization in wastewater treatment, Water Research, 1996, 30:2985-2996
8. Draget K. I., Skjåk-Bræk G. and Olav S., Alginat based new materials, International journal of biological macromolecules, 1997, 21:47-55
9. Damayanti A., Kumoro A. and Bahlawan Z., Review canxi alginat beads as immobilizing matrix of functional cells: extrusion dripping method, characteristics, and application, IOP Conference Series: Materials Science and Engineering, 2021, IOP publishing.
10. Mong Thu T. T. and Krasaekoopt W., Encapsulation of protease from Aspergillus oryzae and lipase from Thermomyces lanuginoseus using alginat and different copolyme types, Agriculture and Natural Resources, 2016, 50:155-161.
11. Reshetilov A., Arlyapov V., Alferov V. and Reshetilova T., BOD biosensors: application of novel technologies and prospects for the development. In State of the Art in Biosensors-Environmental and Medical Applications, 2013, InTech
12. Liu C., Zhao H., Gao S., Jia J., Zhao L., Yong D. and Dong S., A reagent-free tubular biofilm reactor for on-line determination of biochemical oxygen demand, Biosensors and Bioelectronics, 2013, 45:213-218.
13. Sam S. P., Adnan R. and Ng S. L., Statistical optimization of immobilization of activated sludge in PVA/alginat cryogel beads using response surface methodology for p-nitrophenol biodegradation, Journal of Water Process Engineering, 2021, 39:101725.
14. TCVN 5999:1995, Chất lượng nước - Lấy mẫu - Hướng dẫn lấy mẫu nước thải.
15. TCVN 6663-3:2016, Chất lượng nước - Lấy mẫu - Phần 3: Bảo quản và xử lý mẫu nước.
16. Mohebrad B., Ghods G. and Rezaee A., Dairy wastewater treatment using immobilized bacteria on canxi alginat in a microbial electrochemical system, Journal of Water Process Engineering, 2022, 46:102609.
17. Li J., Wu Y., He J. and Huang Y., A new insight to the effect of canxi concentration on gelation process and physical properties of alginat films, Journal of Materials Science, 2016, 51:5791-5801
18. Hecht H. and Srebnik S., Structural characterization of natri alginat and canxi alginat, Biomacromolecules, 2016, 17:2160-2167.
19. Namane A., Amrouche F., Arrar J., Ali O. and Hellal A., Bacterial behaviour in the biodegradation of phenol by indigenous bacteria immobilized in Ca-alginat beads, Environmental Technology, 2020, 41:1829-1836.
20. Dursun A. Y. and Tepe O., Internal mass transfer effect on biodegradation of phenol by Ca-alginat immobilized Ralstonia eutropha, Journal of Hazardous Materials, 126:105-111.