NGHIÊN CỨU DI TRUYỀN LOÀI CHÒ NÂU (Dipterocarpus retusus) Ở PHÚ THỌ PHỤC VỤ CÔNG TÁC BẢO TỒN VÀ CHỌN GIỐNG
Bảo tàng Thiên nhiên Việt Nam, VAST
Bảo tàng Thiên nhiên Việt Nam, Viện Hàn lâm Khoa học và Công nghệ Việt Nam Số 18 Hoàng Quốc Việt, Cầu Giấy, Hà Nội
Số điện thoại: 0914539336; Email: ngmtam58@gmail.com
Nội dung chính của bài viết
Tóm tắt
GENETIC VARIABILITY OF THE SPECIES Dipterocarpus retusus IN PHU THO: CONSERVATION AND BREEDING PROGRAM
Dipterocarpus retusus is a valuable wood tree in the tropical forests of northern Vietnam, which is in danger of extinction due to habitat degradation and overexploitation. To date, this species has not been studied. In the present study, the genetic diversity and structure in four populations in Phu Tho province were investigated using microsatellites. A total of 23 alleles were identified, of which three were private alleles. The number of alleles per locus, effective alleles, observed and expected heterozygosity were 2.3, 1.5, 0.265, and 0.287, respectively. The lowest genetic diversity was found in the Chan Mong population, with an effectivealleles of 1.2, an observed heterozygosity of 0.153, and an expected heterozygosity of 0.16. A high inbreeding coefficient was found in Minh Phu (0.225). Genetic differentiation between populations was low (0.135) and gene flow was high (2.759). Habitat degradation can also decrease gene flow. Clustering analyses (Bayensia and Neighbor-joining) revealed three genetic clusters related to geographical distance and disturbed habitats. These results recommend the conservation and restoration of D. retusus in the future.
Từ khóa
Genetic diversity, genetic structure, habitat disturbance, SSR, species conservation, bảo tồn loài, đa dạng di truyền, cấu trúc di truyền, suy giảm nơi sống
Chi tiết bài viết
Tài liệu tham khảo
2. IUCN, IUCN Red List Categories, IUCN, Gland, Switzerland, 1998.
3. BKHCN, Red Book of Vietnam. Technology and Science Publishing House, Hanoi, 2007.
4. Trang N. T. P., Huong T. T., Duc N. M., Sierens T., Triest L., Genetic population of threatened Hopea odorata Roxb. In the protected areas of Vietnam, Journal of Vietnam Environment, 2014, 6:69-76.
5. Harada K., Dwiyanti F. G., Siregar I. S., Subiakto A., Chong L., Diway B., Lee Y. F., Ninomiya I., Kamiya K., Genetic variation and genetic structure of two closely related dipterocarp species, Dryobalanops aromatic C. F. Gaertn. and D. Beccarii Dyer, The Journal of Botanical Garden Horticulture, 2018, 16:179-187.
6. Isagi V., Kenta T., Nakashizuka T., Microsatellite loci for a tropical emergent tree, Dipterocarpus tempehes V. S1 (Dipterocarpaceae), Molecular Ecology Notes, 2002, 2:12-13.
7. Terauchi R., A polymorphic microsatellite marker from the tropical tree Dryobalanops lanceolata (Dipterocarpaceae), Japan Journal of Genetics, 1994, 69:567-576.
8. Ujino T., Kawaharam T., Tsumara Y., Nagamitsu T., Yoshimaru H., Ratnam W., Development and polymorphism of simple sequence repeat DNA markers for Shorea curtisii and other Dipterocarpaceae species, Heredity, 1998, 81:422-428.
9. Peakall R., Smouse P. E., GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research an update, Bioinformatics, 2012, 28:2537-39.
10. Pritchard J. K., Stephens M., Donnelly P., Inference of population structure using multilocus genotype data, Genetics, 2000, 155:945-59.
11. Earl D. A., von-Holdt B. M., Structure Harvester: a website and program for visualizing structure output and implementing the Evanno method, Conservation Genetics Resources, 2012, 4:359-361.
12. Li Y. L., Liu J. X., StructureSelector: a web-based software to select and visualize the optimal number of clusters using multiple methods, Mol Ecol Resour, 2018, 18:176-177.
13. Takezaki N., Nei M., Tamura K., Software for constructing population trees from allele frequency data and computing other population statistics with Windows interface, Mol Evol, 2010, 27:747-752.
14. Piry S., Luikart G., Cornnet J. M., Bottleneck: a computer program for detecting recent reductions in the effective population size frequency data, Journal of Heredity, 1999, 90:502-503.
15. Rimbawato A., Isoda A. K., Genetic structure of Shorealeprosula in a single population revealed by microsatellite markers. In: Thielges BA, Sastrapradja SD, Rimbawanto A (eds.), Ex-situ and In-situ conservation of commercial tropical trees: The contribution of genetic resource conservation to tree breeding, biotechnology, and future commercial plantation program, Yogyaksrta, Indonesia. 2001, 331-338.
16. Keiya I., Irsyal Y., Anto R., Istiana P., Estimation of genetic variation of Drybalanops oblongifolia Dyer. (Dipterocarpaceae) planted in peninsular Malaysia. In: In-situ and ex-situ conservation of commercial tropical trees (Thielges B. A., Sastrapradja S. D and Rimbawanto A., eds.), Gadjah Mada University, Yogyekarta, 2001, 377-384.
17. Ng K. S. K., Lee S. L., Koh C. L., Spatial structure and genetic diversity of two tropical tree species with contrasting breeding systems and different ploidy levels, Molecular Ecology, 2004, 1-13.
18. Pandey M., Geburek T., Successful cross-amplification of Shorea microsatellites reveals genetic variation in the tropical tree, Shorea robusta Gaertn, Hereditas, 2009, 146:29-32.
19. Tam N. M., Duy V. D., Duc N. M., Hien D. P., Long P. K., Phuong B. X., Microsatellite analysis reveals genetic diversity of the endangered Dipterocarpus dyeri, Journal of Forest Research, 2020, 25(2):198-201.
20. Lim L. S., Wickneswari R., Lee S. L., Latiff A., Genetic structure of natural populations of Dryobalanops aromatic Gaertn. F. (Dipterocarpaceae) in Peninsular Malaysia using microsatellite DNA markers. In: Thielges B.A., Sastrapradja S.D and Rimbawanto A (eds.), In-situ and ex-situ conservation of commercial tropical trees, Yogyekarta, Japan, 2001, 309-324.