XÁC ĐỊNH MỘT SỐ CHỈ SỐ THỰC VẬT ĐẶC TRƯNG CHO HỆ SINH THÁI RỪNG TẠI KHU BẢO TỒN THIÊN NHIÊN KON CHƯ RĂNG BẰNG DỮ LIỆU ẢNH UAV ĐA PHỔ
Viện Sinh thái nhiệt đới, Trung tâm Nhiệt đới Việt - Nga
63 Nguyễn Văn Huyên, Nghĩa Đô, Cầu Giấy, Hà Nội
Số điện thoại: 0936332201; Email: ngotrungdung266@gmail.com
Nội dung chính của bài viết
Tóm tắt
DETERMINATION OF SOME TYPES OF VEGETATION INDICATORS FOR FOREST ECOLOGY IN KON CHU RANG NATURE RESERVE BY MULTI-SPECTRAL UAV PHOTO DATA
Vegetation indicators based on remote sensing imaging material is an important criterion in assessing the health, structure and stability of vegetation. In remote sensing images, images obtained from unmanned aerial vehicles (UAVs) have many advantages, such as high resolution, proactive flight time, and minimizing atmospheric impacts, which are important sources of material in assessing the structure of forest vegetation. In particular, the development of UAV-mounted cameras is improving, enhancing the spectral ranges so that researchers can identify a variety of plant indicators. In this study, the Phantom 4 Multispectral UAV was used with 6 independent cameras attached, including 5 monochrome wave ranges, including blue (Rb): 450±16 nm, green (Rg): 560±16 nm, red (Rr): 650±16 nm, red edge (Rre): 730±16 nm, and near-infrared (Rnir): 840±26 nm, which allowed us to identify most vegetation indicators in the forest area. The results analysed 5 types of vegetation indicators, including NDVI, GNDVI, SAVI, EVI and GCI, for forests in the study area. Indicators indicate that the forest vegetation here is stable, the canopy layer has high coverage, belongs to medium and rich forest types in the Central Highlands region. In addition, analysis of the correlation between vegetation index forms at 30 points in the study area has shown that the image obtained from the UAV has great advantages when applied to the identification of plant indicators, with high similarity, limiting the influence from the atmosphere (the correlation coefficient reaches ≥ 0.74). This is an important basis for expanding the application of UAVs in forest ecology research, identifying their structure and fluctuations over periods, as the basis for the planning and conservation and sustainable development of forest resources.
Từ khóa
NDVI, UAV, Near-infrared (NIR), Phantom 4M, chỉ số thực vật, Index vegetation
Chi tiết bài viết
Tài liệu tham khảo
2. Csillik O., Kumar P., Asner G., Challenges in estimating tropical forest canopy height from planet dove imagery, Remote Sensing, 2020, 12:1160.
3. Huete A., Didan K., Miura T., Rodriguez E., Gao X., Ferreira L. G., Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sensing of Environment, 2002, 83:195-213.
4. Nguyen Dang Hoi, Ngo Trung Dung, Seasonal dynamics of tropical forest vegetation in Ngoc Linh Nature Reserve, Vietnam based on UAV data, Forest and Society, 2021, 5(2):376-389.
5. Yaney-Keller A., Tomillo P., Marshall J., Paladino F., Using Unmanned Aerial Systems (UAS) to assay mangrove estuaries on the Pacific coast of Costa Rica, PLOS ONE, 2019, 14:e0217310.
6. Gupta S., Syed Md. A., Hasan Md. M., Faroque M. Al., Jannat M., Munira S., Meem M. M., Potentials of Unmanned Aerial Vehicle (UAV) in mangrove forest management, Conference: Tailor Made Training (Capacity Building for RS and GIS Researchers on the use of UAV images and its applications in food security, mangrove and forest), 2018.
7. Ballari D., Orellana D., Acosta E., Espinoza M., Morocho V., UAV monitoring for enviromental management in Galapagos Islands, ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B1:1105-1111.
8. Tian J., Wang L., Li X., Gong H., Shi M., Zhong R., Liu X., Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest, International Journal of Applied Earth Observation and Geoinformation, 2017, 61:22-31.
9. Lazaro J. M., Patrick A. N., Richard D. A., Hamza K. K., Comparative assessment of UAV and Sentinel-2 NDVI and GNDVI for preliminary diagnosis of habitat conditions in burunge wildlife management Area, Tanzania, Earth, 2022, 3:769-787.
10. Phạm Tiến Dũng, Nguyễn Huy Hoàng, Trần Thị Mai Sen, Nguyễn Thị Xuân Thắng, Ứng dụng công nghệ bay không người lái để quản lý rừng ngập mặn, nghiên cứu cụ thể tại Vườn Quốc gia Xuân Thủy, Nam Định, 2020, Tạp chí Khoa học kỹ thuật Thủy lợi và Môi trường, 2020, 3(68):59-66.
11. Dung Ngo Trung, Hoi Nguyen Dang, Cuong Dang Hung, Sergey Kolesnikov, UAV application for assessing rainforest structure in Ngoc Linh nature reserve, Vietnam, E3S Web of Conferences, 2020, 203:03006.
12. Tucker C. J., Red and photographic infrared linear combinations for monitoring vegetation, Remote Sensing of Environment, 1979, 8(2):127-150.
13. Özyavuz M., Bilgili C., Salıcı A., Determination of vegetation changes with NDVI method, Journal of Environmental Protection and Ecology, 2015, 16:264-273.
14. Phùng Văn Khoa, Nguyễn Quốc Hiệu, Nguyễn Thị Thanh An, Phí Đăng Sơn, Phạm Văn Duẩn, Sử dụng chỉ số thực vật khác biệt chuẩn hóa (NDVI) để xác định nhanh một số trạng thái rừng ở khu vực Tây Nguyên, Việt Nam, Tạp chí Khoa học và Công nghệ Lâm nghiệp, 2019, 5:81-89.
15. Abdul-Lateef Balogun, Shamsudeen Yekeen, Biswajeet Pradhan, Omar Al-Thuwaynee, Spatio-Temporal analysis of oil spill impact and recovery pattern of coastal vegetation and wetland using multispectral satellite landsat 8-OLI imagery and machine learning models, Remote Sensing, 2020, 12:1225.
16. Abdurahmanov I., Assessment of NDVI and SAVI vegetation indices potential to monitor grazing impact in a rangeland ecosystem, Geoinfomatics International, 2016, 12:9-15.
17. Sari N. M., Rokhmatuloh, Manessa M. D. M., Sentinel-2 image based analysis of spatiotemporal variation of vegetation quality in Majalengka regency, Indonesia, IOP Conference Series: Earth and Environmental Science, 2022, 1030:012013.
18. Souza B. S., Cantalice W. L. B. C., Braga C. C., Silva M. T., Silva E. A., Response of the EVI vegetation index to precipitation anomalies in the state of Paraíba Journal of Hyperspectral remote sensing, Journal of Hyperspectral Remote Sensing, 2022, 12:10-19.
19. Vani V., Mandla V. R., Comparative study of NDVI and SAVI vegetation indices in Anantapur district semi-arid areas, International Journal of Civil Engineering and Technology, 2017, 8(4):559-566.