FLUXES OF ENERGY, WATER AND CO2 ABOVE A TROPICAL MONSOON FOREST IN DONG NAI: RESULTS OF 10 YEARS OF MEASUREMENTS
A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Russian Federation, Southern Branch of Joint Vietnam-Russia Tropical Science and Technology Research Centre
A. N. Severtsov Institute of Ecology and Evolution RAS, Leninskiy Pr. 33, Moscow, 119071, Russian Federation
Email: kurbatova.j@gmail.com
Nội dung chính của bài viết
Tóm tắt
This paper explores more than 10-year continuous measurements of energy, water and carbon dioxide fluxes on a first-established eddy covariance site in Vietnam above a mature semi-evergreen tropical seasonal forest. Daily, seasonal and interannual variations of turbulent fluxes and meteorological parameters were studied. Evapotranspiration decreased in the second half of a dry season and net ecosystem exchange of CO2 increased to positive values (the tropical forest becomes a source of CO2 instead of a sink) in a hot-dry period of a year (March-May). Net radiation was the parameter with minor interannual and seasonal variation. Precipitation varied significantly from year to year and the variation was great between dry seasons. Variations of precipitation affected the annual rate of evapotranspiration but had no proven effect on the annual net ecosystem exchange of CO2. The ecosystem of tropical forest was the considerable net sink of CO2 from the atmosphere.
Từ khóa
Eddy covariance, seasonally dry tropical forest, Dong Nai, net ecosystem excange, evapotranspiration
Chi tiết bài viết
Tài liệu tham khảo
2. Bullock S. H., Mooney H. A., Medina E., Seasonally dry tropical forests, Cambridge University Press, Cambridge, 1995, 450 p.
3. Dirzo R., Young H. S., Mooney H. A., Seasonally dry tropical forests: ecology and conservation, Island Press, Washington, 2011, 408 p.
4. Baccini A., Walker W., Carvalho L., Farina M., Sulla-Menashe D. and Houghton R. A., Tropical forests are a net carbon source based on aboveground measurements of gain and loss, Science, 2017, 358(6360):230-234.
5. Saigusa N., Yamamoto S., Hirata R., Ohtani Y., Ide R., Asanuma J., Gamo M., Hirano T., Kondo H., Kosugi Y., Li S. G. Nakai Y., Takagi K., Tani M., Wang H., Temporal and spatial variations in the seasonal patterns of CO2 flux in boreal, temperate, and tropical forests in East Asia, Agricultural and forest meteorology, 2008, 148(5):761-775.
6. Tanaka N., Kume T., Natsuko Yoshifuji N., Tanaka K., Takizawa H., Shiraki K., Tantasirin C., Tangthamh N., Suzuki M., A review of evapotranspiration estimates from tropical forests in Thailand and adjacent regions. Agricultural and forest meteorology, 2008, 148:807-819.
7. Deshcherevskaya O. A., Avilov V. K., Dinh Ba Duy, Tran Cong Huan, Kurbatova J. A., Modern climate of the Cát Tiên National Park (Southern Vietnam): Climatological data for ecological studies, Izvestiya, Atmospheric and Oceanic Physics, 2013, 49(8):819-838
8. Kuznetsov, Kuznetsova, Лесная растительность: видовой состав и структура древостоев, в сб. Структура и функции почвенного населения тропического муссонного леса (национальный парк Кат Тьен, Южный Вьетнам), под общей редакцией А.В. Тиунова, Товарищество научных изданий КМК, Москва, 2011, p.16-43.
9. Kuricheva O. A., Avilov V. C., Dinh D. B. and Kurbatova J. A., Water cycle of a seasonally dry tropical forest (Southern Vietnam), Izvestiya, Atmospheric and Oceanic Physics, 2015, 51(7):693-711.
10. Kurbatova Yu. A., Kuricheva O. A., Avilov V. K., Dinh Ba Duy, and Kuznetsov A. N., Fluxes of Energy, H2O, and CO2 between the Atmosphere and the Monsoon Tropical Forest in Southern Vietnam, Doklady Biological Sciences, 2015, 464(2):235-238.
11. Kuricheva O. A., Avilov V. K., Dinh D. B., Sandlersky R. B., Kuznetsov A. N. and Kurbatova J. A., Seasonality of energy and water fluxes in a tropical moist forest in Vietnam, Agricultural and Forest Meteorology, 2021, 298:108268.
12. Ueyama M., Hirata R., Mano M., Hamotani K., Harazono Y., Hirano T., Miyata A., Takagi K., Takahashi Y., Influences of various calculation options on heat, water and carbon fluxes determined by open-and closed-path eddy covariance methods, Tellus B, 2012, 64(1):19048.
13. Kosugi Y., Takanashi S., Tani M., Ohkubo S., Matsuo N., Itoh M., Noguchi S., Nik A. R., Effect of inter-annual climate variability on evapotranspiration and canopy CO2 exchange of a tropical rainforest in Peninsular Malaysia, Journal of forest research, 2012, 17(3):227-240.
14. Desherevskii A. V., Zhuravlev V. I., Nikolsky A. N., Sidorin A. Ya., Problems in analyzing time series with gaps and their solution with the WinABD software package, Izv. Atmos. Ocean Phys., 2017a, 53:659-678.
15. Desherevskii A. V., Zhuravlev V. I., Nikolsky A. N., Sidorin A. Ya, Technology for analyzing geophysical time series: Part 2. WinABD - A software package for maintaining and analyzing geophysical monitoring data, Seismic Instrum, 2017, 53:203-223.
16. Desherevskii A. V., Zhuravlev V. I., Nikolsky A. N., Sidorin A. Ya, Analysis of Rhythms in experimental signals, Izv. Atmos. Ocean Phys., 2017c, 53:847-858.
17. Foken T., The energy balance closure problem: An overview, Ecological Applications, 2008, 18(6):1351-1367.
18. Shuttleworth W. J., Observations of radiation exchange above and below Amazonian forest, Journal of the Royal Meteorological Society, 1984, 110:1163-1169.
19. Loescher H. W., Gholz H. L., Jacobs J. M., Oberbauer S. F., Energy dynamics and modeled evapotranspiration from a wet tropical forest in Costa Rica, Journal of Hydrology, 2005, 315(1):274-294.
20. Rocha Da H. R., Manzi A. O., Cabral O. M., et al., Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil, Journal of Geophysical Research, 2009, 114(G1).
21. Rodrigues T. R., de Paulo S. R., Novais J. W. Z., Curado L. F. A., Nogueira J. S., de Oliveira R. G., de A. Lobo F., Vourlitis G. L., Temporal patterns of energy balance for a Brazilian tropical savanna under contrasting seasonal conditions, International Journal of Atmospheric Sciences, 2013.