SYNTHESIS OF UNIFORM CUBE SHAPE CuFe₂O₄ NANOPARTICLES BY A HYDROTHERMAL METHOD

LÊ XUÂN DƯƠNG ⁽¹⁾, NGÔ THỊ LAN ⁽¹⁾, NGUYỄN VĂN DUY ⁽¹⁾

1. INTRODUCTION

Magnetic nanoparticles (NPs) have been of great interest because of its attractive features and wide range of extensive applications in catalyst, adsorption, and as a supercapacitor electrode [1-3]. The size and shape of NPs determine their physical and chemical features, which may function as a foundation for the development of new product [4, 5]. As a conventional magnetic material, magnetite Fe_3O_4 and ferrites MFe_2O_4 have yielded a great deal of paper featuring mumerous techniques and nanoparticle morphologies [6, 7].

In a previous report, solvothermal strategy has been widely used to synthesize many kinds of NPs with uniform size and shape, including monodisperse nanocrystals and microspheres MFe₂O₄. Controling the shape of NPs is also an equally improtant aspect of nano synthesis. However, the challenge to synthetically control the morphology of MFe₂O₄ nanostructures with a simple method still remain up to date [8, 9]. Compared with other ferrites, $CuFe_2O_4$ NPs has attracted more attention due to its property and application in catalysis for it is inexpensive and environmental friendly [10, 11]. Additional, $CuFe_2O_4$ NPs can be recovered conveniently after the reaction by a magnet [12-14].

In this study, monodisperse NPs cube shape $CuFe_2O_4$ were successfully synthesized through a hydrothermal method. The $CuFe_2O_4$ NPs has a superparamagnetic and an uniform cube shape structure.

2. EXPERIMENTAL

2.1. Material

Iron(II) sulfate heptahydrate (FeSO₄.7 H_2O), oleic acid (OA), ethanol (EtOH), sodium hydroxide (NaOH), copper sulphate pentahydrate (CuSO₄.5 H_2O) were purchased from Aladdin Chemical Co., Ltd. All the reagents were of analytical grade and used without further purification, and solution were prepared using deionized water.

2.2. Synthesis of cube shape CuFe₂O₄ NPs

In a typical synthesis, 1.5 g NaOH, 15 mL H₂O, 9 ml ethanol, and 15 mL oleic acid (OA) were mixed together to form an even solution. After stirring for 30 min, an aqueous solution of 2 mmol FeSO₄.7H₂O (0.56 g) and 1 mmol CuSO₄.5H₂O (0.25 g) (in 21 mL de-inozed water) was the added. After further stirring for 30 min, the solution was transferred into an autoclave and kept at 160°C, 180°C, 200°C for 10h, respectively. The system was then allowed to cool to room temperature. The CuFe₂O₄ products were isolated by strong magnetic suction, and washed with ethanol and deionized water several times [3].

2.3. Characterization

Powder X-ray diffraction (XRD) spectra were obtained by a Rigaku D/max-2400 diffractometer using Cu-K α radiation in the 2 θ range of 10-90°. Transmission electron microscopy (TEM) images were obtained on a Tecnai G2 F30, FEI, USA. SEM images was collected on a Hitachi S-4800 field emission scanning electron microscope equipped with a Horiba EMAX energy-dispersive X-ray analyser. Magnetic measurements of CuFe₂O₄ NPs were investigated with a quantum design vibrating sample magnetometer (VSM) at room temperature in an applied magnetic field sweeping from -15 to 15 kOe.

3. RESULTS AND DISCUSSION

The morphologies and structural of the synthesized $CuFe_2O_4$ NPs were analyzed by SEM. As is illustrated in Fig. 1 (a,b and c) with a uniform cube shape, resulting from a minimized surface energy.

Fig. 1. SEM image of the CuFe₂O₄ NPs formed at different temperatures; (a) 160°C, (b) 180°C and (c) 200°C

We can draw from Fig. 1 that the size of $CuFe_2O_4$ NPs increased with the increase of reaction temperature.

Fig. 2. TEM image of the CuFe₂O₄ NPs formed at different temperatures; (a) 160°C, (b) 180°C and (c) 200°C

TEM image (Fig. 2) confirms the $CuFe_2O_4$ NPs shape is cube structure. The particles were well dispersed with a mean particle size of about 50 nm.

The XRD patterns of the CuFe₂O₄ NPs is shown in Fig. 3. The XRD pattern of the CuFe₂O₄ NPs shows the characteristic peaks of magnetite NPs. The sharp and strong peaks confirm that the products are well crystallized. The CuFe₂O₄ NPs show five characteristic diffraction peaks at 2 theta = 30.3° , 35.6° , 43.2° , 57.2° and 63.0° corresponding to (220), (311), (400), (511), and (440), respectively [15].

From the SEM, TEM and XRD, we can draw conclusions. The reaction temperature at 180° C is the best condition for synthesized unifrom cube shape CuFe₂O₄ NPs.

Fig. 3. XRD of CuFe₂O₄ NPs formed at different temperatures; (a) 160°C, (b) 180°C and (c) 200°C

Fig. 4 shows the FT-IR spectra of $CuFe_2O_4$ NPs. The IR spectra show main absorption bands at ~580 cm⁻¹, corresponding to the the metal oxygen stretching vibrations of octahedral and tetrahedral ions [15]. The absorption broad band at ~3400 cm⁻¹ represents the stretching mode of H₂O molecules and OH groups. The band around 1600 cm⁻¹ is corresponds to the bending mode of H₂O molecules.

Fig. 4. FT-IR spectra of CuFe₂O₄ NPs with reaction temperatures 180°C

Tạp chí Khoa học và Công nghệ nhiệt đới, Số 21, 12-2020

Fig. 5. Room temperature magnetization curves of the CuFe₂O₄ NPs with reaction temperatures 180°C

The magnetic measurements were carried out by VSM at room temperature. The magnetization curves measured for $CuFe_2O_4$ is shown in Fig. 5. The magnetic saturation values of $CuFe_2O_4$ is 20.5 emu/g. The abovementioned results indicated an easy and efficient way to separate and recycle the $CuFe_2O_4$ from the solution by an external magnetic field.

4. CONCLUSION

In summary, $CuFe_2O_4$ NPs which features with superparamagnetic, and cube shape structure was synthesized by a hydrothermal method. It can also be valuable in catalyst, medicine, and as supercapacitor electrode, and in nano composite materials.

Acknowledgement: This research is funded by Le Quy Don Technical University in the regular research projects 2019-2020 under Grant No. 19.1.004.

REFERENCES

- 1. X. Le, Z. Dong, Y. Liu, Z. Jin, T.-D. Huy, M. Le, J. Ma, *Palladium* nanoparticles immobilized on core-shell magnetic fibers as a highly efficient and recyclable heterogeneous catalyst for the reduction of 4-nitrophenol and Suzuki coupling reactions, J. Mater. Chem. A, 2014, **2**:19696-19706.
- 2. Z. Dong, X. Le, C. Dong, W. Zhang, X. Li, J. Ma, Ni@Pd core-shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol, Appl. Catal. B: Environ., 2015, 162:372-380.
- 3. C. Li, R. Wei, Y. Xu, A. Sun, L. Wei, *Synthesis of hexagonal and triangular Fe3O4 nanosheets via seed-mediated solvothermal growth*, Nano. Res., 2015, 7:536-543.

- M. Crosswhite, J. Hunt, T. Southworth, K. Serniak, A. Ferrari, A.E. Stiegman, Development of magnetic nanoparticles as microwave-specific catalysts for the rapid, low-temperature synthesis of formalin solutions, ACS Catal., 2013, 3:1318-1323.
- 5. S. Si, C. Li, X. Wang, D. Yu, Q. Peng, Y. Li, *Magnetic monodisperse Fe3O4 manoparticles*, Crystal Growth & Design, 2005, **5**:391-393.
- 6. B. Bateer, C. Tian, Y. Qu, S. Du, Y. Yang, Z. Ren, K. Pan, H. Fu, *Synthesis, size and magnetic properties of controllable MnFe2O4 nanoparticles with versatile surface functionalities*, Dalton Trans, 2014, **43**:9885-9891.
- I. Ibrahim, I.O. Ali, T.M. Salama, A.A. Bahgat, M.M. Mohamed, Synthesis of magnetically recyclable spinel ferrite (MFe2O4, M=Zn, Co, Mn) nanocrystals engineered by sol gel-hydrothermal technology: High catalytic performances for nitroarenes reduction, Appl. Catal. B: Environ., 2016, 181:389-402.
- 8. C. Dey, A. Chaudhuri, A. Ghosh, M.M. Goswami, *Magnetic cube-shaped NiFe2O4 nanoparticles: An effective model catalyst for nitro compound reduction*, ChemCatChem, 2017, **9**:1953-1959.
- 9. Y. Xu, D. Sun, H. Hao, D. Gao, Y. Sun, Non-stoichiometric Co(ii), Ni(ii), Zn(ii)-ferrite nanospheres: size controllable synthesis, excellent gas-sensing and magnetic properties, RSC Adv., 2016, 6:98994-99002.
- A. Karimipour, S.A. Bagherzadeh, M. Goodarzi, A.A. Alnaqi, M. Bahiraei, M.R. Safaei, M.S. Shadloo, *Synthesized CuFe2O4/SiO2 nanocomposites* added to water/EG: evaluation of the thermophysical properties beside sensitivity analysis & EANN, International Journal of Heat and Mass Transfer, 2018, 127:1169-1179.
- 11. X. Dong, B. Ren, Z. Sun, C. Li, X. Zhang, M. Kong, S. Zheng, D.D. Dionysiou, *Monodispersed CuFe2O4 nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation*, Appl. Catal. B: Environ., 2019, **253**:206-217.
- 12. A. Goyal, S. Bansal, S. Singhal, *Facile reduction of nitrophenols: Comparative catalytic efficiency of MFe 2 O 4 (M=Ni, Cu, Zn) nano ferrites*, International Journal of Hydrogen Energy, 2014, **39**:4895-4908.
- 13. S. Anandan, T. Selvamani, G.G. Prasad, A. Asiri, J. Wu, *Magnetic and catalytic properties of inverse spinel CuFe2O4 nanoparticles*, Journal of Magnetism and Magnetic Materials, 2017, **432**:437-443.
- 14. L.-K. Wu, H. Wu, H.-B. Zhang, H.-Z. Cao, G.-Y. Hou, Y.-P. Tang, G.-Q. Zheng, *Graphene oxide/CuFe2O4 foam as an efficient absorbent for arsenic removal from water*, Chemical Engineering Journal, 2018, **334**:1808-1819.
- 15. H. Jiao, G. Jiao, J. Wang, *Preparation and Magnetic Properties of CuFe2O4 Nanoparticles, Synthesis and Reactivity in Inorganic*, Metal-Organic and Nano-Metal Chemistry, 2013, **43**:131-134.

Tạp chí Khoa học và Công nghệ nhiệt đới, Số 21, 12-2020

SUMMARY

In this study, $CuFe_2O_4$ nanoparticles (NPs) which features with superparamagnetic, and uniform cube shape structure was synthesized by a hydrothermal method. The prepared samples were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), X-ray powder diffraction (XRD). The $CuFe_2O_4$ NPs were well dispersed with a mean particle size of about 50 nm. The $CuFe_2O_4$ NPs is extremely useful for support catalyst in heterogeneous catalysis applications and adsorption.

Keywords: Cube shape CuFe₂O₄, superparamagnetic, nanoparticles.

Nhận bài ngày 21 tháng 8 năm 2020 Phản biện xong ngày 25 tháng 9 năm 2020 Hoàn thiện ngày 29 tháng 9 năm 2020

⁽¹⁾ Faculty of Technical Physics and Chemistry, Le Quy Don Technical University