EFFECT OF FLY ASH AND GRANULATED BLAST FURNACE SLAG ON THE PHYSICAL PROPERTIES OF GEOPOLYMER CONCRETE USE CORAL SAND AND SEAWATER
Coastal Branch of the Joint Vietnam - Russia Tropical Science and Technology Research Center, 30 Nguyen Thien Thuat, Nha Trang, Khanh Hoa.
30 Nguyen Thien Thuat, Nha Trang, Khanh Hoa
Phone: 0984400436; Email: quanttndvn@gmail.com
Main Article Content
Abstract
Geopolymer concrete is an eco-friendly material that possesses properties comparable to those of traditional Portland cement concrete. This study aimed to explore how the ratio of fly ash to blast furnace slag impacts the mechanical properties of geopolymer concrete using coral sand and seawater. Fly ash and blast furnace slag were used as binders alongside alkaline activators such as liquid glass and sodium hydroxide solution. The characteristics were assessed based on measurements of bulk density, water absorption, workability, compressive strength, and flexural strength. The compressive and flexural strengths of the samples increased gradually with the rising ratio of fly ash to blast furnace slag. Moreover, no significant differences were observed when comparing geopolymer concrete's flexural and compressive strengths using coral sand and seawater with those using river sand and freshwater. On the other hand, the FTIR analysis results indicate that the characteristic Si-O-Si(Al) bond of the geopolymerization reaction in the wavenumber range 950 to 1005 cm-1 is present in both types of concrete, with no significant difference observed. These findings suggest that river sand and freshwater in geopolymer concrete production can replace coral sand and seawater for geopolymer concrete.
Keywords
blast furnace slag, fly ash, coral sand, seawater, geopolymer concrete
Article Details
References
2. A. Fathima, K. K. Smitha, A review on feasibility of geopolymer sea sand concrete in interlocking concrete pavement blocks, Int. Res. J. Eng. Technol., Vol. 7 No. 2, pp. 2022-2026, 2020.
3. N. T. N. Vân, N. Q. Phú, Nghiên cứu sử dụng cát biển và tro bay chế tạo bê tông, Khoa học kỹ thuật Thủy lợi và Môi trường, Vol. 74, No. 6, pp. 62-66, 2021.
4. N. Q. Phú, N. T. Lệ, Nghiên cứu sử dụng cát biển, kết hợp tro bay và xỉ lò cao chế tạo bê tông geopolymer ứng dụng cho các công trình thủy lợi, Khoa học Công nghệ Xây dựng, Vol. 3, pp. 35-41, 2021.
5. J. Davidovits, Environmentally driven geopolymer cement applications in Geopolymer 2002 Conference, 2002, pp. 1-9.
6. J. Davidovits, High-Alkali cements for 21st century concretes, Spec. Publ., Vol. 144, pp. 383–398, 1994.
7. S. Luhar, D. Nicolaides and I. Luhar, Fire resistance behaviour of geopolymer concrete: An overview, Buildings, Vol. 11, pp. 82, 2021. DOI:10.3390/buildings11030082
8. A. L. Almutairi, B. A. Tayeh, A. Adesina, H. F. Isleem and A. M. Zeyad, Potential applications of geopolymer concrete in construction: A review, Case Stud. Constr. Mater., Vol. 15, pp. 00733, 2021. DOI:10.1016/j.cscm.2021.e00733
9. T. V. Lâm, V. K. Diến và B. B. Igorevich, Nghiên cứu sử dụng kết hợp tro bay nhiệt điện với xỉ lò cao để chế tạo bê tông chất lượng cao hạt mịn không xi măng, Tạp chí Xây dựng, Vol. 10, pp. 183-190, 2021.
10. S. Luhar, I. Luhar, Application of seawater and sea sand to develop geopolymer composites, Int. J. Recent Technol. Eng., Vol. 8, No. 5, pp. 5625-5633, 2020. DOI:10.35940/ijrte.E5681.018520
11. Boyaci, The geopolymer behavior of metakaolin and spinel structures of different kaolins., Master’s Thesis, Kütahya Dumlupınar University/Institute of Science, Kütahya, Turkey, 2018
12. M. Komljenovic, Z. Bascarivic and V. Bradic, Mechanical and microstructural properties of alkaliactivated fly ash geopolymers, J. Hazard. Mater., Vol. 181, pp. 35–42, 2010. DOI:10.1016/j.jhazmat.2010.04.064
13. S. Greiser, G. Gluth, P. Sturm and C. Jäger, 29Si{27Al}, 27Al{29Si} and 27Al{1H} double-resonance NMR spectroscopy study of cementitious sodium aluminosilicate gels (geopolymers) and gel-zeolite composites, RSC Adv., Vol. 70, pp. 40164–40171, 2018. DOI:10.1039/C8RA09246J
14. M. G. Norton, J. L. Provis, 1000 at 1000: Geopolymer technology—the current state of the art, J. Mater. Sci., Vol. 55, No. 28, pp. 13487-13489, 2020. DOI:10.1007/s10853-020-04990-z
15. S. Parathi, P. Nagarajan and S. A. Pallikkara, Ecofriendly geopolymer concrete: a comprehensive review, Clean Technol. Environ. Policy, Vol. 23, No. 6, pp. 1701-1713, 2021. DOI:10.1007/s10098-021-02085-0
16. S. Yang, J. Xu, C. Zang, L. Rui, Q. Yang and S. Sun, Mechanical properties of alkali-activated slag concrete mixed by seawater and sea sand, Constr. Build. Mater., Vol. 169, pp. 395-410, 2019. DOI:10.1016/j.conbuildmat.2018.11.113
17. A. Kamel, N. Marija, Z. Yibing and Ye Guang, A review on the durability of alkaliactivated fly ash/slag systems: advances, issues, and perspectives, Indus. Eng. Chem. Res., Vol. 55, No. 19, pp. 5439-5453, 2016. DOI:10.1021/acs.iecr.6b00559
18. A. Rafeet, R. Vinai, M. Soutsos and W. Sha, Effects of slag substitution on physical and mechanical properties of fly ash-based alkali activated binders (AABs), Cem. Concr. Res., Vol. 122, pp. 118–135, 2019. DOI:10.1016/j.cemconres.2019.05.003